Project description:The landscape of multiple myeloma (MM) has changed considerably in the past two decades regarding new treatments, insight into disease biology and innovation in the techniques available to assess measurable residual disease (MRD) as the most accurate method to evaluate treatment efficacy. The sensitivity and standardization achieved by these techniques together with unprecedented rates of complete remission (CR) induced by new regimens, raised enormous interest in MRD as a surrogate biomarker of patients' outcome and endpoint in clinical trials. By contrast, there is reluctance and general lack of consensus on how to use MRD outside clinical trials. Here, we discuss critical aspects related with the implementation of MRD in clinical practice.
Project description:BackgroundRecent advances in therapeutic interventions have dramatically improved complete response rates in patients with multiple myeloma (MM). The ability to identify residual myeloma cells (e.g., measurable residual disease [MRD]) can provide valuable information pertaining to patient's depth of response to therapy and risk of relapse. Multiparametric flow cytometry is an excellent technique to monitor MRD and has been demonstrated to correlate with patient outcome post-treatment. To achieve the high sensitivity (one abnormal cell in 105 -106 cells) required for MRD evaluation, millions of cells have to be acquired and conventional immunophenotyping protocols are unable to attain these numbers, indicating the needs for alternative flow cytometric staining procedures. A bulk, "Pre-lysis" method is the consensus approach for staining large number of cells, requires two red blood cell lysis steps, and can adversely affect epitope density. In this study, we tested the "Pooled-tube" and "Dextran Sedimentation" staining procedures and correlated them with the "Pre-lysis" method as potential alternative approaches.MethodsA total of 22 bone marrow aspirates from patients with plasma cell (PC) dyscrasia were processed in parallel using the "Pre-lysis," "Pooled-tube," and "Dextran Sedimentation" techniques. Stain indices were calculated and compared to assess their impacts on staining performance for each antibody used in the consensus panel. The recovery of normal and abnormal PCs, mast cells, and B cell precursors was enumerated and compared after their counts were normalized using fluorescent beads. The limit of blank, limit of detection, and lower limit of quantification were established using serial dilution experiments.ResultsThe staining performances of CD19 PECy7, CD27 BV510, CD81 APCH7, and CD138 BV421 were improved using the "Pooled-tube" method when compared to "Pre-lysis." "Pre-lysis" was better at resolving CD56 using clone C5.9 but our results demonstrated similar improvement can also be achieved by "Pooled-tube" when alternative CD56 PE clones were used. "Dextran sedimentation" yielded similar staining results when compared to "Pre-lysis" for all the markers analyzed. The "Pooled-tube" method, when normalized to "Pre-lysis," recovered higher numbers of total PCs (1.2 ± 0.2 times higher; p = .049), normal PCs (1.4 ± 0.26; p = .007), mast cells (1.46 ± 0.27; p = .003), and B cell precursors (1.42 ± 0.3; p = .011), but not abnormal PCs (1.09 ± 0.2; p = .352). There was no evidence that the recovery of cells was different between "Pre-lysis" versus "Dextran Sedimentation." All three flow cytometric assays achieved a minimum sensitivity of 10-5 and approached that of 10-6 for detecting rare events.ConclusionBoth "Pooled-tube" and "Dextran Sedimentation" staining procedures were comparable to the "Pre-lysis" method and are suitable high sensitivity flow cytometric approaches that can be used to process bone marrow samples for MM MRD testing.
Project description:We used a modified Delphi approach to establish areas of consensus and nonconsensus regarding the utility of determining measurable residual disease (MRD) to assess multiple myeloma (MM) treatment response, which may inform disease management and design of future clinical trials. This modified Delphi study incorporated 2 iterative rounds of surveys to evaluate the opinions of an expert panel of 61 practicing hematological oncologists from across 14 countries in Europe concerning the use of MRD testing in MM management. Survey 1 assessed experts' opinions on MRD testing in different clinical situations and associated challenges. Survey 2 focused on the lack of consensus areas identified in survey 1. Consensus to an individual question was defined a priori as 75% agreement or disagreement by the panel. From the 2 rounds of surveys, the experts reached consensus agreement that MRD testing should be performed in newly diagnosed or relapsed patients who achieved complete response (CR) or better after transplantation. In transplant-ineligible patients, experts recommended MRD testing in those who are ≤70 years old and in CR. If a patient was previously positive on positron-emission tomography and computed tomography (PET/CT), both MRD and PET/CT should be assessed at CR. MRD testing should be performed ≤6 months after transplantation and every 6-12 months in continuously treated patients in CR. There was no consensus on making treatment decisions based on MRD status. MRD testing is an important component of clinical management in MM. Additional data will further clarify the role of MRD in guiding treatment decisions.
Project description:Multiple myeloma (MM) is the second most common hematological malignancy. Approximately 15% of MM patients are affected by the t(4;14) translocation resulting in the IGH::NSD2 fusion transcript. Breakage occurs in three major breakpoint regions within the NSD2 gene (MB4-1, MB4-2, and MB4-3), where MB4-1 leads to the production of full-length protein, while truncated proteins are expressed in the other two cases. Measurable residual disease (MRD) has been conclusively established as a crucial prognostic factor in MM. The IGH::NSD2 fusion transcript can serve as a sensitive MRD marker. Using bone marrow (BM) and peripheral blood (PB) samples from 111 patients, we developed a highly sensitive quantitative real-time PCR (qPCR) and digital PCR (dPCR) system capable of detecting fusion mRNAs with a sensitivity of up to 1:100,000. PB samples exhibited sensitivity three orders of magnitude lower compared to BM samples. Patients with an MB4-2 breakpoint demonstrated significantly reduced overall survival (p = 0.003). Our novel method offers a simple and sensitive means for detecting MRD in a substantial proportion of MM patients. Monitoring may be carried out even from PB samples. The literature lacks consensus regarding survival outcomes among patients with different NSD2 breakpoints. Our data align with previous findings indicating that patients with the MB4-2 breakpoint type tend to exhibit unfavorable overall survival.
Project description:IntroductionRemarkable progress in molecular characterization methods has led to significant improvements in how we manage multiple myeloma (MM). The introduction of novel therapies has led to significant improvements in overall survival over the past 10 years. However, MM remains incurable and treatment choice is largely based on outdated risk-adaptive strategies that do not factor in improved treatment outcomes in the context of modern therapies.Areas coveredThis review discusses current risk-adaptive strategies in MM and the clinical application of proteomics in the monitoring of treatment response, disease progression, and minimal residual disease (MRD). We also discuss promising biomarkers of disease progression, treatment response, and chemoresistance. Finally, we will discuss an immunomics-based approach to monoclonal antibody (mAb), vaccine, and CAR-T cell development.Expert opinionIt is an exciting era in oncology with basic scientific knowledge translating in novel therapeutic approaches to improve patient outcomes. With the advent of effective immunotherapies and targeted therapies, it has become crucial to identify biomarkers to aid in the stratification of patients based on anticipated sensitivity to chemotherapy. As a paradigm of diseases highly dependent on protein homeostasis, multiple myeloma provides the perfect opportunity to investigate the use of proteomics to aid in precision medicine.
Project description:Stringent complete response (sCR) is defined as a deeper response than complete response (CR) in multiple myeloma. Whether achieving sCR correlates with better survival remains controversial. We evaluated the outcomes in patients with intact immunoglobulin multiple myeloma (IIMM) and light chain multiple myeloma (LCMM) who achieved a very good partial response (VGPR) or better. Multicolour flow cytometry was used to assess the depth of response. LCMM patients with sCR had significantly lower measurable residual disease (MRD) levels than those with CR (median MRD: 7.9 × 10-4 vs. 5.6 × 10-5, P < 0.01). Nonetheless, no significant difference was observed in MRD levels across the responses in groups of patients with IIMM (VGPR vs. CR: 3.5 × 10-4 vs. 7.0 × 10-5, P = 0.07; CR vs. sCR: 7.0 × 10-5 vs. 5.4 × 10-5, P = 0.81. In accordance with MRD levels, the median overall survival of patients with sCR was significantly longer (sCR, CR, VGPR; not reached, 41 months, and 58 months, respectively; VGPR vs. CR, P = 0.83; CR vs. sCR, P = 0.04) in LCMM, but not in IIMM (sCR, CR, VGPR; not reached, 41 months, and not reached, respectively; VGPR vs. CR, P = 0.59; CR vs. sCR; P = 0.10). Our results show that sCR represents a deeper response that correlates with longer survival in patients with LCMM, but not IIMM.
Project description:Multiple myeloma (MM) is a challenging, progressive, and highly heterogeneous hematological malignancy. MM is characterized by multifocal proliferation of neoplastic plasma cells in the bone marrow (BM) and sometimes in extramedullary organs. Despite the availability of novel drugs and the longer median overall survival, some patients survive more than 10 years while others die rapidly. This heterogeneity is mainly driven by biological characteristics of MM cells, including genetic abnormalities. Disease progressions are mainly due to the inability of drugs to overcome refractory disease and inevitable drug-resistant relapse. In clinical practice, a bone marrow biopsy, mostly performed in one site, is still used to access the genetics of MM. However, BM biopsy use is limited by its invasive nature and by often not accurately reflecting the mutational profile of MM. Recent insights into the genetic landscape of MM provide a valuable opportunity to implement precision medicine approaches aiming to enable better patient profiling and selection of targeted therapies. In this review, we explore the use of the emerging field of liquid biopsies in myeloma patients considering current unmet medical needs, such as assessing the dynamic mutational landscape of myeloma, early predictors of treatment response, and a less invasive response monitoring.
Project description:Seventy-six FDA approved oncology drugs and emerging therapeutics were evaluated in 25 multiple myeloma (MM) and 15 non-Hodgkin’s lymphoma cell lines and in 113 primary MM samples. Ex vivo drug sensitivities were mined for associations with clinical phenotype, cytogenetic, genetic mutation and transcriptional profiles. We investigated the predictive value of anti-apoptotic BCL2 family member transcriptomic ratios as biomarkers of venetoclax sensitivity. RNA-seq analysis was available in 38 primary patient samples, from which we identified the 9 most (median AUC 0.09409) and least (median AUC 0.7195) sensitive samples to venetoclax.
Project description:Seventy-six FDA-approved oncology drugs and emerging therapeutics were evaluated in 25 multiple myeloma (MM) and 15 non-Hodgkin's lymphoma cell lines and in 113 primary MM samples. Ex vivo drug sensitivities were mined for associations with clinical phenotype, cytogenetic, genetic mutation, and transcriptional profiles. In primary MM samples, proteasome inhibitors, dinaciclib, selinexor, venetoclax, auranofin, and histone deacetylating agents had the broadest cytotoxicity. Of interest, newly diagnosed patient samples were globally less sensitive especially to bromodomain inhibitors, inhibitors of receptor tyrosine kinases or non-receptor kinases, and DNA synthesis inhibitors. Clustering demonstrated six broad groupings of drug sensitivity linked with genomic biomarkers and clinical outcomes. For example, our findings mimic clinical observations of increased venetoclax responsiveness in t(11;14) patients but also identify an increased sensitivity profile in untreated patients, standard genetic risk, low plasma cell S-Phase, and in the absence of Gain(1q) and t(4;14). In contrast, increased ex vivo responsiveness to selinexor was associated with biomarkers of poor prognosis and later relapse patients. This "direct to drug" screening resource, paired with functional genomics, has the potential to successfully direct appropriate individualized therapeutic approaches in MM and to enrich clinical trials for likely responders.
Project description:The basic principle that deeper therapeutic responses lead to better clinical outcomes in cancer has emerged technologies capable of detecting rare residual tumor cells. The need for ultra-sensitive approaches for minimal residual disease (MRD) detection is particularly evident in Multiple Myeloma (MM), where patients will ultimately relapse despite the achievement of complete remission, which is commonplace due to remarkable therapeutic advances. Consequently, current response criteria on MM have been amended based on MRD status and MRD negativity is now considered the most dominant prognostic factor and the most valuable indicator for a subsequent relapse. However, there are particular limitations and several aspects for MRD assessment that remain open. This review summarizes current data on MRD in the clinical management of MM, highlights open issues and discusses the challenges and the endless opportunities arising for both patients and clinicians. Furthermore, it focuses on the current status of MRD in clinical trials, its dynamics in addressing debatable aspects in the clinical handling and its potential role as the prevailing factor for future MRD-driven tailored therapies.