Project description:BackgroundCardiac magnetic resonance (CMR) can detect inflammatory myocardial alterations in patients suspected of having acute myocarditis. There is limited information regarding the degree of normalization of CMR parameters during the course of the disease and the time window during which quantitative CMR should be most reasonably implemented for diagnostic work-up.Methods and resultsTwenty-four patients with suspected acute myocarditis and 45 control subjects underwent CMR. Initial CMR was performed 2.6±1.9 days after admission. Myocarditis patients underwent CMR follow-up after 2.4±0.6, 5.5±1.3, and 16.2±9.9 weeks. The CMR protocol included assessment of standard Lake Louise criteria, T1 relaxation times, extracellular volume fraction, and T2 relaxation times. Group differences between myocarditis patients and control subjects were highest in the acute stage of the disease (P<0.001 for all parameters). There was a significant and consistent decrease in all inflammatory CMR parameters over the course of the disease (P<0.01 for all parameters). Myocardial T1 and T2 relaxation times-indicative of myocardial edema-were the only single parameters showing significant differences between myocarditis patients and control subjects on 5.5±1.3-week follow-up (T1: 986.5±44.4 ms versus 965.1±28.1 ms, P=0.022; T2: 55.5±3.2 ms versus 52.6±2.6 ms; P=0.001).ConclusionsIn patients with acute myocarditis, CMR markers of myocardial inflammation demonstrated a rapid and continuous decrease over several follow-up examinations. CMR diagnosis of myocarditis should therefore be attempted at an early stage of the disease. Myocardial T1 and T2 relaxation times were the only parameters of active inflammation/edema that could discriminate between myocarditis patients and control subjects even at a convalescent stage of the disease.
Project description:BackgroundMass COVID-19 vaccination campaigns have helped impede the COVID-19 pandemic. In rare cases, some vaccines have led to vaccine associated myocarditis in a specific subset of the population, usually young males. Cardiac magnetic resonance (CMR) can reliably diagnose vaccine associated myocarditis, but follow-up data of CMR proven acute myocarditis is scarce.Materials and methodsNine patients with acute vaccine associated myocarditis underwent baseline and follow-up CMR examinations and were compared to baseline parameters at initial presentation and to a group of 20 healthy controls. CMR protocol included functional assessment, T1 and T2 mapping, T2 signal intensity ratio, strain feature tracking, and late gadolinium enhancement (LGE).ResultsMyocarditis patients (n = 9, aged 24 ± 6 years, 8 males) underwent CMR follow-up after an average of 5.8 ± 4.3 months. All patients showed a complete resolution of visual myocardial edema while also demonstrating a reduction in overall LGE extent from baseline to follow-up (4.2 ± 2.1 vs. 0.9 ± 0.8%, p < 0.001), although visual LGE was still noted in all patients. Left ventricular ejection fraction was normal at baseline and at follow-up (58 ± 6 vs. 62 ± 4%, p = 0.10) as well as compared to a healthy control group (60 ± 4%, p = 0.24). T1 (1024 ± 77 vs. 971 ± 34 ms, p = 0.05) and T2 relaxations times (57 ± 6 vs. 51 ± 3 ms, p = 0.03) normalized at follow-up. Most patients reported a resolution of clinical symptoms, while two (22%) reported new onset of exertional dyspnea.ConclusionPatients with COVID-19 vaccine associated acute myocarditis showed a complete, uncomplicated resolution of myocardial inflammation on follow-up CMR, which was associated with a near complete resolution of symptoms. Minor, residual myocardial scarring was present on follow-up LGE imaging. The long-term implications of the remaining myocardial scar-tissue after vaccine associated myocarditis remain unknown warranting further studies.
Project description:Schizophrenia patients have significantly lower life expectancy than the general population. Clozapine is the most effective antipsychotic to reduce the mortality rate in these patients. Here, we report a schizophrenic patient with clozapine-induced myocarditis and successful retrial. In the first trial, clozapine was discontinued due to myocarditis. In the second trial, the titration rate was slower, and sodium valproate was not coadministered with clozapine. The patient has not developed myocarditis over 3.5 years of observation. It may be possible to take clozapine for a long time even after clozapine-induced myocarditis, and thus improve the life expectancy of schizophrenia patients.
Project description:Myocarditis is a rare complication of the COVID-19 mRNA vaccine. We previously reported a case series of 15 adolescents with vaccine-associated myocarditis, 87% of whom had abnormalities on initial cardiac magnetic resonance (CMR), including late gadolinium enhancement (LGE) in 80%. We performed follow-up CMRs to determine the trajectory of myocardial recovery and better understand the natural history of vaccine-associated myocarditis. Case series of patients age < 19 years admitted to Boston Children's Hospital with acute vaccine-associated myocarditis following the BNT162b2 vaccine who had abnormal CMR at the time of initial presentation, and underwent follow-up testing. CMR assessment included left ventricular (LV) ejection fraction, T2-weighted myocardial imaging, LV global native T1, LV global T2, extracellular volume (ECV), and late gadolinium enhancement (LGE). Ten patients (9 male, median age 15 years) with vaccine-associated myocarditis underwent follow-up CMR at a median of 92 days (range 76-119) after hospital discharge. LGE was persistent in 80% of patients, though improved from prior in all cases. Two patients (20%) had abnormal LV global T1 at presentation, which normalized on follow-up. ECV decreased between acute presentation and follow-up in 6/10 patients; it remained elevated at follow-up in 1 patient and borderline in 3 patients.ConclusionCMR performed ~3 months after admission for COVID-19 vaccine-associated myocarditis showed improvement of LGE in all patients, but persistent in the majority. Follow-up CMR 6-12 months after acute episode should be considered to better understand the long-term cardiac risks.What is known• Myocarditis is a rare side effect of COVID-19 mRNA vaccine. •Late gadolinium enhancement is present on most cardiac magnetic resonance at the time of acute presentation.What is new•Late gadolinium enhancement improved on all repeat cardiac magnetic resonance at 3-month follow-up. •Most patients still had a small amount of late gadolinium enhancement, the clinical significance of which is yet to be determined.
Project description:BackgroundAcute myocardial infarction (AMI) remains as one of the most common lethal diseases in the world and therefore it is necessary to understand its effect on molecular basis. Genome-wide microarray analysis provides us to predict potential biomarkers and signaling pathways for this purpose.ObjectivesThe aim of this study is to understand the molecular basis of the immediate right ventricular cellular response to left ventricular AMI.Material and methodsA rat model of left anterior descending coronary artery ligation was used to assess the effect of left ventricular AMI on both the right ventricle as a remote zone and the left ventricle as an ischemic/infarct zone. Microarray technology was applied to detect the gene expression. Gene Ontology and KEGG pathways analysis were done to identify effected pathways and related genes.ResultsWe found that immune response, cell chemotaxis, inflammation, cytoskeleton organization are significantly deregulated in ischemic zone as early response within 30 min. Unexpectedly, there were several affected signaling pathways such as cell chemotaxis, regulation of endothelial cell proliferation, and regulation of caveolea regulation of anti-apoptosis, regulation of cytoskeleton organization and cell adhesion on the remote zone in the right ventricle.ConclusionThis data demonstrates that there is an immediate molecular response in both ventricles after an AMI. Although the ischemia did not histologically involve the right ventricle; there is a clear molecular response to the infarct in the left ventricle. This provides us new insights to understand molecular mechanisms behind AMI and to find more effective drug targets.
Project description:A 40-year-old woman with history of atopy and peripheral eosinophilia presented with clinical signs of heart failure. Echocardiography revealed a restrictive cardiomyopathy with biventricular thrombi. Hypereosinophilic syndrome resulting in eosinophilic myocarditis (Loeffler's syndrome) was diagnosed. This case highlights the workup, diagnosis, and management of hypereosinophilic syndrome with eosinophilic myocarditis. (Level of Difficulty: Advanced.).
Project description:Necrotizing eosinophilic myocarditis is a rare but potentially fatal condition that requires prompt recognition and treatment. We describe a case of a young athlete presenting with chest pain and breathlessness, with evidence of rapidly deteriorating cardiac function. The condition was successfully treated with corticosteroids, with no evidence of residual myocardial damage. This is the first reported case to demonstrate the utility of cardiac magnetic resonance imaging for diagnosis and monitoring response to treatment. It also highlights the value of endomyocardial biopsy in establishing a tissue diagnosis in cases of fulminant myocarditis, in order to direct treatment appropriately.