Project description:Survival rates of patients with either early and advanced stage non-small-cell lung cancer (NSCLC) have improved with newer systemic therapy and radiation techniques, including combination regimens, targeted therapies, and immunotherapies. The cancer cooperative groups have historically played a critical role in the advancement of NSCLC therapy. Annually, representatives from cooperative groups worldwide convene at the International Lung Cancer Congress (ILCC). In summer 2015, the ILCC reached its 16th anniversary. This article highlights the NSCLC studies presented by participating groups in 2015.
Project description:BackgroundThymic epithelial tumors (TETs) are rare neoplasms arising in the mediastinum, including thymic carcinomas and thymomas. Due to their rarity, little is known about the genomic profiles of TETs. Herein, we investigated the genomic characteristics of TETs evaluated in a large comprehensive genomic profiling database in a real-world setting.MethodsWe included data from two different cohorts: Foundation Medicine Inc. (FMI) in the United States and the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) in Japan. Samples profiled were examined for all classes of alterations in 253 genes targeted across all assays. Tumor mutational burden (TMB) and microsatellite instability (MSI) were also evaluated.ResultsA total of 794 patients were collected in our study, including 722 cases from FMI and 72 cases from C-CAT. In the FMI data, CDKN2A (39.9%), TP53 (30.2%) and CDKN2B (24.6%) were frequently altered in thymic carcinoma, versus TP53 (7.8%), DNMT3A (6.8%), and CDKN2A (5.8%) in thymoma. TMB-high (≥10 mutations/Mb) and MSI were present in 7.0% and 2.3% of thymic carcinomas, and 1.6% and 0.3% of thymomas, respectively. Within C-CAT data, CDKN2A (38.5%), TP53 (36.5%) and CDKN2B (30.8%) were also frequently altered in thymic carcinoma, while alterations of TSC1, SETD2 and LTK (20.0% each) were found in thymoma.ConclusionsTo the best of our knowledge, this is the largest cohort in which genomic alterations, TMB and MSI status of TETs were investigated. Potential targets for treatment previously unbeknownst in TETs are identified in this study, entailing newfound opportunities to advance therapeutic development.
Project description:In this systematic review, we foresee what could be the approved scenario in the next few years for CAR-T cell therapies directed against hematological and solid tumor malignancies. China and the USA are the leading regions in numbers of clinical studies involving CAR-T. Hematological antigens CD19 and BCMA are the most targeted, followed by mesothelin, GPC3, CEA, MUC1, HER2, and EGFR for solid tumors. Most CAR constructs are second-generation, although third and fourth generations are being largely explored. Moreover, the benefit of combining CAR-T treatment with immune checkpoint inhibitors and other drugs is also being assessed. Data regarding product formulation and administration, such as cell phenotype, transfection technique, and cell dosage, are scarce and could not be retrieved. Better tracking of trials' status and results on the ClinicalTrials.gov database should aid in a more concise and general view of the ongoing clinical trials involving CAR-T cell therapy.
Project description:Monoclonal antibodies (mAbs) that block the programmed death 1 (PD-1) or programmed death-ligand 1 (PD-L1) receptors are the most clinically advanced tumor immunotherapies. Given the broad antitumor efficacy and novel mechanism of action, numerous combinatorial approaches incorporating PD-1/PD-L1 blockade have been suggested; herein we present a comprehensive analysis of these clinical trials. We queried clinicaltrials.gov for all PD-1/PD-L1 mAbs administered for cancer therapy with an end date of 4/30/2017. A total of 1,218 clinical trials met our search criteria. These trials have a planned enrollment of 227,190 patients, and approximately half (493) were initiated in 2016 alone. Of these over 1,200 trials, 916 combine PD-1/PD-L1 blockade with at least one additional therapy, ranging from traditional treatment modalities like surgery and chemoradiation to newer therapies like small molecule inhibitors and other immunotherapies. The staggering proliferation of clinical trials combining PD-1/PD-L1 blockade with disparate treatments necessitates careful accounting to maximize efficiency and highlight areas of unmet needs. We believe our analysis provides this data and expect it will facilitate the design of future clinical trials in this burgeoning area of oncology research.
Project description:Systemic sclerosis is an autoimmune connective tissue disease characterized by vasculopathy and fibrosis of the skin and internal organs. The pathogenesis of systemic sclerosis is very complex. Mediators produced by immune cells are involved in the inflammatory processes occurring in the tissues. The currently available therapeutic options are often insufficient to halt disease progress. This article presents an overview of potential therapeutic targets and the pipeline of possible future therapeutic options. It is based on research of clinical trials involving novel, unestablished methods of treatment. Increasing knowledge of the processes and mediators involved in systemic scleroderma has led to the initiation of drug trials with therapeutic targets of CD28-CD80/86, CD19, CCL24, CD20, CD30, tumor necrosis factor (TNF), transforming growth factor β (TGF-β), B-cell activating factor (BAFF), lysophosphatidic acid receptor 1 (LPA1 receptor), soluble guanylate cyclase (sGC), Janus kinases (JAK), interleukin 6 (IL-6), endothelin receptor, and autotaxin. Data from clinical trials on these drugs indicate a significant potential for several new therapeutic options for systemic sclerosis in the upcoming future.
Project description:In recent years, we have seen rapid expansion of chimeric antigen receptor T-cell (CAR-T) therapies in multiple malignancies. CAR-T therapy has profoundly altered the treatment landscape of non-Hodgkin lymphoma, B-cell acute lymphoblastic leukemia, and multiple myeloma. Currently available CD19 and B-cell maturation antigen-directed CAR-T therapies have shown high overall response rate and durable remissions in patients who have failed standard therapies. Multiple studies are underway exploring the role of CAR-T-cell therapy as earlier line of treatment. In high-grade B-cell lymphoma, CD19 CAR-T therapy may replace autologous hematopoietic cell transplantation as second line therapy in near future. CAR-T-cell therapy targeting novel tumor-associated antigens will help expand utility of this treatment modality in other hematological malignancies. It may also help overcome limitations of currently approved CAR-T-cell therapies. In this review, we have provided an overview of currently approved CAR-T therapies and upcoming clinical trials which may potentially impact the clinical practice.
Project description:BackgroundThymic epithelial tumors (TETs) are rare, and information regarding their surgical outcomes and prognostic factors has rapidly changed in the past few decades. We analyzed surgical treatment practices for TETs and outcomes in terms of overall survival (OS) and freedom from recurrence (FFR) during a 13-year period in Korea.MethodsIn total, 1,298 patients with surgically resected TETs between 2000 and 2013 were enrolled retrospectively. OS and FFR were calculated using the Kaplan-Meier method and evaluated with the log-rank test. Prognostic factors for OS and FFR were analyzed with multivariable Cox regression.ResultsA total of 1,098 patients were diagnosed with thymoma, and 200 patients were diagnosed with thymic carcinoma. Over the study period, the total number of patients with surgically treated TETs and the proportion of patients who underwent minimally invasive thymic surgery (MITS) increased annually. The 5-year and 10-year survival rates of surgically treated TETs were 91.0% and 82.1%, respectively. The 5-year and 10-year recurrence rates were 86.3% and 80.0%, respectively. The outcomes of surgically treated TETs improved over time. Multivariable Cox hazards analysis for OS, age, tumor size, and Masaoka-Koga stage were independent predictors of prognosis. The World Health Organization classification and tumor-node-metastasis (TNM) staging were also related to the prognosis of TETs.ConclusionSurgical treatment of TETs achieved a good prognosis with a recent increase in MITS. The M-K stage was the most important prognostic factor for OS and FFR. The new TNM stage could also be an effective predictor of the outcomes of TETs.
Project description:Thymic tumors are a group of rare mediastinal malignancies that include three different histological subtypes with completely different clinical behavior: the thymic carcinomas, the thymomas, and the rarest thymic neuroendocrine tumors. Nowadays, few therapeutic options are available for relapsed and refractory thymic tumors after a first-line platinum-based chemotherapy. In the last years, the deepening of knowledge on thymus' biological characterization has opened possibilities for new treatment options. Several clinical trials have been conducted, the majority with disappointing results mainly due to inaccurate patient selection, but recently some encouraging results have been presented. In this review, we summarize the molecular alterations observed in thymic tumors, underlying the great biological differences among the different histology, and the promising targeted therapies for the future.
Project description:Angiogenesis significantly influences the carcinogenesis of thymic epithelial tumors (TET). Both thymomas and thymic carcinoma (TC) overexpress VEGF-A and VEGFR-1 and -2. This review aims to provide an appraisal of the use of anti-angiogenics in the treatment of TET. The literature research identified 16 studies that were deemed eligible for further analysis. Seven studies assessed the clinical efficacy of sunitinib and five studies the use of apatinib and/or anlotinib. The multicenter Japanese phase II REMORA trial investigated the efficacy of lenvatinib, which is a multi-targeted inhibitor of VEGFR, FGFR, RET, c-Kit, and other kinases. The objective response rate was 38% (25.6-52%), which is the highest documented in TET that progressed after first-line chemotherapy. Anti-angiogenic agents may be useful in the treatment of TET, which are not amenable to curative treatment. Their toxicity profile seems to be acceptable. However, angiogenesis inhibitors do not appear to have a major influence on either thymomas or TC, although multikinase inhibitors may have some effect on TC. The current evidence suggests that the most active agent is lenvatinib, whereas sunitinib could be proposed as an acceptable second-line therapy for TC. Further research concerning the combination of immune checkpoint inhibitors with anti-angiogenic drugs is warranted.