Ontology highlight
ABSTRACT: Background
The prognostic index of natural killer lymphoma (PINK) is recommended for use as a prognostic model for determining the best non-anthracycline–based treatment for extranodal natural killer T-cell lymphoma, nasal-type (ENKTL). However, this model does not provide an accurate individual risk estimation for patients; therefore, our retrospective study was conducted to determine this risk. Methods
Clinical data from 250 patients with ENKTL treated with non-anthracycline-based regimens were analyzed. The statistically significant clinical characteristics were selected as the parameters for our models. The patient data from 250 patients were randomly divided into 5 groups for 5-fold cross validation before final models were established on all of the patients’ data. A statistical model nomogram based on a Cox proportional hazards model, and a machine learning model based on the lightGBM algorithm, were constructed. Concordance index (C-index) and calibration curve, areas under the curve (AUC) values, and binary error were used to evaluate two models. Results
Five variables [age, the Chinese Southwest Oncology Group and Asia Lymphoma Study Group ENKTL (CA) staging system, Eastern Cooperative Oncology Group (ECOG) score, B symptoms, and lactate dehydrogenase (LDH)] were significant and were selected as parameters for creating the statistical model nomogram, while lesion sites (anatomical regions, lymph nodes and primary lesion site) took place of CA staging system in machine learning model. During cross validation, the mean C-indices of training cohort and validation cohort for statistical model nomogram and PINK were 0.851±0.008, 0.843±0.029, 0.758±0.019 and 0.757±0.080, respectively, while the mean 3-year AUC for machine learning model were 0.920±0.010 and 0.865±0.035, respectively. The calibration curves and binary errors showed a good correlation between the predicted result and the reality. Conclusions
These two models could provide ENKTL patients with an accurate individual risk estimation in the era of non-anthracycline-based treatment.
SUBMITTER: Sun J
PROVIDER: S-EPMC8798130 | biostudies-literature |
REPOSITORIES: biostudies-literature