Ontology highlight
ABSTRACT: Background
Epstein-Barr virus (EBV) glycoprotein 42 (gp42) enters B lymphocytes by binding to the human leukocyte antigen II (HLA-II) on their surface, in a process involving other EBV proteins (e.g., gH/gL and gp350). From a latent state of infection, the virus may reactivate and enter into a rapid proliferation phase, which enables the further entry of EBV into B lymphocytes and epithelial cells, leading to tumor development. EBV is an oncogenic virus associated with Hodgkin lymphoma (HL), and gp42 is a key protein in EBV infection of B lymphocytes. However, the exact binding pattern and capacity of gp42 are unclear. Methods
The patterns and morphologies of gp42 binding to HLA-DPB1 were obtained through molecular dynamics simulation. The binding efficiency of gp42 and HLA-DPB1 was verified by plasmid construction and flow cytometry. Results
The β-chain of HLA-DPB1 and the α-chain of gp42 formed a hydrogen-bonded complex, which was a hydrophilic protein with a resolution of 3.25. The binding efficiency between HLA-DPB1 and gp42 reached its peak (range, 26–31.3%) at a gp42 protein concentration of 80 µg. Conclusions
We can inhibit the binding of gp42 to HLA-DPB1 by reducing the concentration of gp42. In the subsequent experiments, we will verify whether the binding of gp42 to HLA-DPB1 can be prevented by breaking hydrogen bonds and destroying hydrophilicity. These data may provide certain reference value for the development and treatment of Hodgkin’s lymphoma.
SUBMITTER: Li H
PROVIDER: S-EPMC8798132 | biostudies-literature |
REPOSITORIES: biostudies-literature