Project description:Male Hi-Myc mice were placed on three dietary regimens [30% calorie restriction (CR), overweight control (modified AIN76A with 10 kcal% fat), and a diet-induced obesity regimen (DIO) 60 kcal% fat]. All diet groups had approximately similar incidence of hyperplasia and low-grade prostatic intraepithelial neoplasia in the ventral prostate at 3 and 6 months of age. However, 30% CR significantly reduced the incidence of in situ adenocarcinomas at 3 months compared with the DIO group and at 6 months compared with both the overweight control and DIO groups. Furthermore, the DIO regimen significantly increased the incidence of adenocarcinoma with aggressive stromal invasion, as compared with the overweight control group (96% vs. 65%, respectively; P = 0.02) at the 6-month time point. In addition, at both 3 and 6 months, only in situ carcinomas were observed in mice maintained on the 30% CR diet. Relative to overweight control, DIO increased whereas 30% CR reduced activation of Akt, mTORC1, STAT3, and NF?B (p65) in ventral prostate. DIO also significantly increased (and 30% CR decreased) numbers of T-lymphocytes and macrophages in the ventral prostate compared with overweight control. The mRNA levels for interleukin (IL) 1?, IL1?, IL6, IL7, IL23, IL27, NF?B1 (p50), TNF?, and VEGF family members were significantly increased in the ventral prostate of the DIO group compared with both the overweight control and 30% CR diet groups. Collectively, these findings suggest that enhanced growth factor (Akt/mTORC1 and STAT3) and inflammatory (NF?B and cytokines) signaling may play a role in dietary energy balance effects on prostate cancer progression in Hi-Myc mice.
Project description:Prostate cancer (PCa) is the most common non-cutaneous cancer in men. The androgen receptor (AR), a ligand-activated transcription factor, constitutes the main drug target for advanced cases of the disease. However, a variety of other transcription factors and signaling networks have been shown to be altered in patients and to influence AR activity. Amongst these, the oncogenic transcription factor c-Myc has been studied extensively in multiple malignancies and elevated protein levels of c-Myc are commonly observed in PCa. Its impact on AR activity, however, remains elusive. In this study, we assessed the impact of c-Myc overexpression on AR activity and transcriptional output in a PCa cell line model and validated the antagonistic effect of c-MYC on AR-targets in patient samples. We found that c-Myc overexpression partially reprogrammed AR chromatin occupancy and was associated with altered histone marks distribution, most notably H3K4me1 and H3K27me3. We found c-Myc and the AR co-occupy a substantial number of binding sites and these exhibited enhancer-like characteristics. Interestingly, c-Myc overexpression antagonised clinically relevant AR target genes. Therefore, as an example, we validated the antagonistic relationship between c-Myc and two AR target genes, KLK3 (alias PSA, prostate specific antigen), and Glycine N-Methyltransferase (GNMT), in patient samples. Our findings provide unbiased evidence that MYC overexpression deregulates the AR transcriptional program, which is thought to be a driving force in PCa.
Project description:Prostate cancer (PCa) is a top-incidence malignancy, and the second most common cause of death amongst American men and the fifth leading cause of cancer death in men around the world. Androgen receptor (AR), the key transcription factor, is critical for the progression of PCa by regulating a series of target genes by androgen stimulation. A number of co-regulators of AR, including co-activators or co-repressors, have been implicated in AR-mediated gene transcription and PCa progression. Epigenetic regulators, by modifying chromatin integrity and accessibility for transcription regulation without altering DNA sequences, influence the transcriptional activity of AR and further regulate the gene expression of AR target genes in determining cell fate, PCa progression and therapeutic response. In this review, we summarized the structural interaction of AR and epigenetic regulators including histone or DNA methylation, histone acetylation or non-coding RNA, and functional synergy in PCa progression. Importantly, epigenetic regulators have been validated as diagnostic markers and therapeutic targets. A series of epigenetic target drugs have been developed, and have demonstrated the potential to treat PCa alone or in combination with antiandrogens.
Project description:Prostate cancer (PCa) poses a major public health problem in men. Metastatic PCa is incurable, and ultimately threatens the life of many patients. Mutations in tumor suppressor genes and oncogenes are important for PCa progression, whereas the role of epigenetic factors in prostate carcinogenesis is insufficiently examined. The histone demethylase KDM5C exerts important roles in tumorigenesis. KDM5C has been reported to be highly expressed in various cancer cell types, particularly in primary PCa. Here, we could show that KDM5C is highly upregulated in metastatic PCa. Functionally, in KDM5C knockdown cells migratory and invasion capacity was reduced. Interestingly, modulation of KDM5C expression influences several EMT signaling pathways (e.g., Akt/mTOR), expression of EMT transcription factors, epigenetic modifiers, and miR-205, resulting in increased expression of E-cadherin and reduced expression of N-cadherin. Mouse xenografts of KDM5C knockdown cells showed reduced tumor growth. In addition, the Akt/mTOR pathway is one of the classic signaling pathways to mediate tumor metabolic homeostasis, which is beneficial for tumor growth and metastasis. Taken together, our findings indicate that a combination of a selective KDM5C- and Akt/mTOR-inhibitor might be a new promising therapeutic strategy to reduce metastatic burden in PCa.
Project description:The androgen receptor (AR) is the principal therapeutic target in prostate cancer. For the past 70 years, androgen deprivation therapy (ADT) has been the major therapeutic focus. However, some patients do not benefit, and those tumors that do initially respond to ADT eventually progress. One recently described mechanism of such an effect is growth and survival-promoting effects of the AR that are exerted independently of the AR ligands, testosterone and dihydrotestosterone. However, specific ligand-independent AR target genes that account for this effect were not well characterized. We show here that c-Myc, which is a key mediator of ligand-independent prostate cancer growth, is a key ligand-independent AR target gene. Using microarray analysis, we found that c-Myc and AR expression levels strongly correlated with each other in tumors from patients with castration-resistant prostate cancer (CRPC) progressing despite ADT. We confirmed that AR directly regulates c-Myc transcription in a ligand-independent manner, that AR and c-Myc suppression reduces ligand-independent prostate cancer cell growth, and that ectopic expression of c-Myc attenuates the anti-growth effects of AR suppression. Importantly, treatment with the bromodomain inhibitor JQ1 suppressed c-Myc function and suppressed ligand-independent prostate cancer cell survival. Our results define a new link between two critical proteins in prostate cancer - AR and c-Myc - and demonstrate the potential of AR and c-Myc-directed therapies to improve prostate cancer control.
Project description:ZW10 interactor (Zwint) is upregulated in various types of tumors and exerts a carcinogenic effect. However, little is known about the expression profile, function and molecular mechanisms of action of Zwint in melanoma. Therefore, the aim of the present study was to investigate the expression levels of Zwint in melanoma cell lines and tissues. It was revealed that Zwint was highly expressed in melanoma samples. Functional experiments indicated that Zwint knockdown suppressed the proliferation and migration of A375 melanoma cells. Further mechanistic studies demonstrated that Zwint knockdown decreased the protein expression levels of c-Myc, MMP-2, Slug, mTOR, phosphorylated (p)-mTOR, p-p38 and fibronectin, while it increased the protein expression levels of E-cadherin and MMP-9. Among these genes, c-Myc, MMP-2 and Slug were overexpressed to investigate their effects on cell proliferation following Zwint knockdown. The results demonstrated that overexpression of c-Myc, but not MMP-2 or Slug, rescued the effects of Zwint knockdown on melanoma cell proliferation and migration. Taken together, the results of the present study suggested that Zwint may act as an oncogene in melanoma by regulating c-Myc expression.
Project description:Rationale: Enhancer RNA (eRNA) bi-directionally expresses from enhancer region and sense eRNA regulates adjacent mRNA in cis and in trans. However, it has remained unclear whether antisense eRNAs in different direction are functional or merely a reflection of enhancer activation. Methods: Strand-specific, ribosome-minus RNA sequencing (RNA-seq) were performed in AR positive prostate cancer cells. RNA-seq, GRO-seq, ChIP-seq, 4C-seq and DNA-methylation-seq that published in our and other labs were re-analyzed to define bi-directional enhancer RNA and DNA methylation regions. Molecular mechanisms were demonstrated by 3C, ChIP, ChIRP, CLIP, RT-PCR and western blot assays. The biological functions of antisense-eRNA were assessed using mice xenograft model and RT-PCR analysis in human tissues. Results: In this study, we identified that antisense eRNA was regulated by androgen receptor (AR) activity in prostate cancer cells. Antisense eRNA negatively regulated antisense ncRNA in AR-related target genes' loci, through recruiting DNMT1 on the antisense enhancer in the gene-ending regions and elevating DNA methylation. Importantly, the chromatin exhibited a double looping manner that facilitated sense-eRNA to promoter and antisense-eRNA to gene-ending region in cis. Depletion of antisense eRNA impaired its neighbor mRNA expression, cancer growth and invasion. The expressions of antisense eRNA were correlated with biochemical recurrence and clinical marker PSA's levels in patients' tissues. Conclusions: The findings indicated that antisense eRNA was a functional RNA and may be a novel target that when suppressed improved prostate cancer therapy and diagnosis. New chromatin interaction among enhancer, promoter and gene-ending region might provide new insight into the spatiotemporal mechanism of the gene transcription and acting of bi-directional eRNAs.
Project description:Prostate cancer, the majority of which is adenocarcinoma, is the most common epithelial cancer affecting a majority of elderly men in Western nations. Its manifestation, however, varies from clinically asymptomatic insidious neoplasms that progress slowly and do not threaten life to one that is highly aggressive with a propensity for metastatic spread and lethality if not treated in time. A number of somatic genetic and epigenetic alterations occur in prostate cancer cells. Some of these changes, such as loss of the tumor suppressors PTEN and p53, are linked to disease progression. Others, such as ETS gene fusions, appear to be linked more with early phases of the disease, such as invasion. Alterations in chromosome 8q24 in the region of MYC have also been linked to disease aggressiveness for many years. However, a number of recent studies in human tissues have indicated that MYC appears to be activated at the earliest phases of prostate cancer (e.g., in tumor-initiating cells) in prostatic intraepithelial neoplasia, a key precursor lesion to invasive prostatic adenocarcinoma. The initiation and early progression of prostate cancer can be recapitulated in genetically engineered mouse models, permitting a richer understanding of the cause and effects of loss of tumor suppressors and activation of MYC. The combination of studies using human tissues and mouse models paints an emerging molecular picture of prostate cancer development and early progression. This picture reveals that MYC contributes to disease initiation and progression by stimulating an embryonic stem cell-like signature characterized by an enrichment of genes involved in ribosome biogenesis and by repressing differentiation. These insights pave the way to potential novel therapeutic concepts based on MYC biology.
Project description:BackgroundThe activities of MYC, the androgen receptor, and its associated pioneer factors demonstrate substantial reprogramming between early and advanced prostate cancer. Although previous studies have shown a shift in cellular metabolic requirements associated with prostate cancer progression, the epigenetic regulation of these processes is incompletely described. Here, we have integrated chromatin immunoprecipitation sequencing (ChIP-seq) and whole-transcriptome sequencing to identify novel regulators of metabolism in advanced prostate tumors characterized by elevated MYC activity.ResultsUsing ChIP-seq against MYC, HOXB13, and AR in LNCaP cells, we observed redistribution of co-bound sites suggestive of differential KMT2A activity as a function of MYC expression. In a cohort of 177 laser-capture microdissected foci of prostate tumors, KMT2A expression was positively correlated with MYC activity, AR activity, and HOXB13 expression, but decreased with tumor grade severity. However, KMT2A expression was negatively correlated with these factors in 25 LuCaP patient-derived xenograft models of advanced prostate cancer and 99 laser-capture microdissected foci of metastatic castration-resistant prostate cancer. Stratified by KMT2A expression, ChIP-seq against AR and HOXB13 in 15 LuCaP patient-derived xenografts showed an inverse association with sites involving genes implicated in lipid metabolism, including the arachidonic acid metabolic enzyme PLA2G4F. LuCaP patient-derived xenograft models grown as organoids recapitulated the inverse association between KMT2A expression and fluorine-18 labeled arachidonic acid uptake in vitro.ConclusionsOur study demonstrates that the epigenetic activity of transcription factor oncogenes exhibits a shift during prostate cancer progression with distinctive phenotypic effects on metabolism. These epigenetically driven changes in lipid metabolism may serve as novel targets for the development of novel imaging agents and therapeutics.
Project description:Technological and methodological advances in multi-omics data generation and integration approaches help elucidate genetic features of complex biological traits and diseases such as prostate cancer. Due to its heterogeneity, the identification of key functional components involved in the regulation and progression of prostate cancer is a methodological challenge. In this study, we identified key regulatory interactions responsible for primary to metastasis transitions in prostate cancer using network inference approaches by integrating patient derived transcriptomic and miRomics data into gene/miRNA/transcription factor regulatory networks. One such network was derived for each of the clinical states of prostate cancer based on differentially expressed and significantly correlated gene, miRNA and TF pairs from the patient data. We identified key elements of each network using a network analysis approach and validated our results using patient survival analysis. We observed that HOXD10, BCL2 and PGR are the most important factors affected in primary prostate samples, whereas, in the metastatic state, STAT3, JUN and JUNB are playing a central role. Benefiting integrative networks our analysis suggests that some of these molecules were targeted by several overexpressed miRNAs which may have a major effect on the dysregulation of these molecules. For example, in the metastatic tumors five miRNAs (miR-671-5p, miR-665, miR-663, miR-512-3p and miR-371-5p) are mainly responsible for the dysregulation of STAT3 and hence can provide an opportunity for early detection of metastasis and development of alternative therapeutic approaches. Our findings deliver new details on key functional components in prostate cancer progression and provide opportunities for the development of alternative therapeutic approaches.