Ontology highlight
ABSTRACT: Background
The development of morphine tolerance is a clinical challenge for managing severe pain. Studies have shown that neuroinflammation is a critical aspect for the development of analgesic tolerance. We found that AMPK-autophagy activation could suppress neuroinflammation and improve morphine tolerance via the upregulation of suppressor of cytokine signaling 3 (SOCS3) by inhibiting the processing and maturation of microRNA-30a-5p.Methods
CD-1 mice were utilized for the tail-flick test to evaluate morphine tolerance. The microglial cell line BV-2 was utilized to investigate the mechanism of AMPK-autophagy-mediated posttranscriptional regulation of SOCS3. Proinflammatory cytokines were measured by western blotting and real-time PCR. The levels of SOCS3 and miRNA-processing enzymes were evaluated by western blotting, real-time PCR and immunofluorescence staining.Results
Based on experimental verification, miRNA-30a-5p could negatively regulate SOCS3. The AMPK activators AICAR, resveratrol and metformin downregulated miRNA-30a-5p. We found that AMPK activators specifically inhibited the processing and maturation of miRNA-30a-5p in microglia by degrading DICER and AGO2 via autophagy. Furthermore, a miRNA-30a-5p inhibitor significantly improved morphine tolerance via upregulation of SCOS3 in mice. It markedly increased the level of SOCS3 in the spinal cord of mice and subsequently inhibited morphine-induced phosphorylation of NF-κB p65. In addition, a miRNA-30a-5p inhibitor decreased the levels of IL-1β and TNF-α caused by morphine in microglia.Conclusion
AMPK-autophagy activation suppresses neuroinflammation and improves morphine tolerance via the upregulation of SOCS3 by inhibiting miRNA-30a-5p.
SUBMITTER: Wan L
PROVIDER: S-EPMC8800317 | biostudies-literature |
REPOSITORIES: biostudies-literature