Testing the predictive accuracy of COVID-19 forecasts☆
Ontology highlight
ABSTRACT: We test the predictive accuracy of forecasts of the number of COVID-19 fatalities produced by several forecasting teams and collected by the United States Centers for Disease Control and Prevention for the epidemic in the United States. We find three main results. First, at the short horizon (1-week ahead) no forecasting team outperforms a simple time-series benchmark. Second, at longer horizons (3- and 4-week ahead) forecasters are more successful and sometimes outperform the benchmark. Third, one of the best performing forecasts is the Ensemble forecast, that combines all available predictions using uniform weights. In view of these results, collecting a wide range of forecasts and combining them in an ensemble forecast may be a superior approach for health authorities, rather than relying on a small number of forecasts.
SUBMITTER: Coroneo L
PROVIDER: S-EPMC8801780 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA