Project description:Escaping programmed cell death is a hallmark of cancer. NF-?B transcription factors are key regulator of cell survival and aberrant NF-?B signaling has been involved in the pathogenesis of most human malignancies. Although NF-?B is best known for its antiapoptotic role, other processes regulating the life/death balance, such as autophagy and necroptosis, seem to network with NF-?B. This review discusses how the reciprocal regulation of NF-?B, autophagy and programmed cell death affect cancer development and progression.
Project description:Mitochondrial fusion and fission is a dynamic process critical for the maintenance of mitochondrial function and cell viability. During excitotoxicity neuronal mitochondria are fragmented, but the mechanism underlying this process is poorly understood. Here, we show that Mfn2 is the only member of the mitochondrial fusion/fission machinery whose expression is reduced in in vitro and in vivo models of excitotoxicity. Whereas in cortical primary cultures, Drp1 recruitment to mitochondria plays a primordial role in mitochondrial fragmentation in an early phase that can be reversed once the insult has ceased, Mfn2 downregulation intervenes in a delayed mitochondrial fragmentation phase that progresses even when the insult has ceased. Downregulation of Mfn2 causes mitochondrial dysfunction, altered calcium homeostasis, and enhanced Bax translocation to mitochondria, resulting in delayed neuronal death. We found that transcription factor MEF2 regulates basal Mfn2 expression in neurons and that excitotoxicity-dependent degradation of MEF2 causes Mfn2 downregulation. Thus, Mfn2 reduction is a late event in excitotoxicity and its targeting may help to reduce excitotoxic damage and increase the currently short therapeutic window in stroke.
Project description:BackgroundImmune checkpoint inhibitors (ICIs) are standard therapies for patients with advanced non-small-cell lung cancer (NSCLC) and a programmed death-ligand 1 (PD-L1) tumor proportion score (TPS) ≥50%. Tumor mutation burden (TMB) also predicts response to ICIs but is often not available in real time for decision making in the first-line setting. Smoking exposure can be a proxy for TMB in NSCLC. The impact of smoking status on efficacy of PD-1 blockade in NSCLC patients with PD-L1 TPS ≥50% has not been well defined.Patients and methodsTo investigate the relationship between smoking and activity of ICIs in NSCLC, we retrospectively studied 315 patients with NSCLC and PD-L1 TPS ≥50% at five USA academic medical centers. Objective response rates (ORRs), progression-free survival (PFS), and duration of response (DOR) were compared between never (<100 lifetime cigarettes), light (≤10 pack-years), and heavy (>10 pack-years) smokers. A subset of patients underwent next-generation sequencing to estimate TMB.ResultsWe identified 36 (11%) never, 42 (13%) light, and 237 (75%) heavy smokers with NSCLC and PD-L1 TPS ≥50% treated with ICIs. Objective responses were observed in 27%, 40%, and 40% of never, light, and heavy smokers, respectively (P = 0.180 never versus heavy; P = 1.000 light versus heavy). Median PFS and median DOR were numerically shorter in never and light smokers compared with heavy smokers (PFS 3.0 versus 4.0 versus 5.4 months; median DOR 6.9 versus 10.8 versus 17.8 months), but were not statistically different [PFS: hazard ratio (HR) 1.37, P = 0.135 and HR 1.24, P = 0.272; DOR: HR 1.92, P = 0.217 and HR 1.79, P = 0.141].ConclusionsPD-(L)1 inhibitors are associated with antitumor activity in NSCLC with PD-L1 TPS ≥50% regardless of smoking status. Nevertheless, there is a signal of potentially decreased durability among never and light smokers that should be further evaluated. Distinct immunobiologic features may affect initial response versus durability of antitumor immunity to programmed cell death 1 (PD-1) blockade.
Project description:ObjectiveIn narratives, characters often face threats where they either live (survivor narratives) or die (death narratives). Both outcomes have the potential to persuade, and are frequently utilised in mass communication campaigns, yet more research is needed examining the relative effectiveness and underlying mechanisms of each strategy.DesignU.S. adults (N = 1010) were randomly assigned to a 2 (survivor, death) × 2 (non-foreshadowed, foreshadowed) × 2 (within-study replication: narrative 1, narrative 2) between-participants experiment with melanoma stories as stimuli.Main outcome measuresIntentions to engage in sun safe behaviour and skin self-examination behaviour were assessed in the pre- and posttest, and then transformed into change scores.ResultsDeath narratives increased sun safe behaviour intentions. Consistent with the entertainment overcoming resistance model, foreshadowed death narratives were found to increase sun safe behaviour intentions via increased transportation and decreased counterarguing.ConclusionCompared to survivor narratives, death narratives increase intentions to engage in sun safe behaviour. The findings offer support for character death as a key feature of narrative persuasion, and narrative transportation and counterarguing as important mediational pathways.
Project description:A better understanding of the mechanisms underlying neuronal death in cerebral ischemia is required for the development of stroke therapies. Here we analyze the contribution of the tropomyosin-related kinase B (TrkB) neurotrophin receptor to excitotoxicity, a primary pathological mechanism in ischemia, which is induced by overstimulation of glutamate receptors of the N-methyl-D-aspartate type. We demonstrate a significant modification of TrkB expression that is strongly associated with neurodegeneration in models of ischemia and in vitro excitotoxicity. Two mechanisms cooperate for TrkB dysregulation: (1) calpain-processing of full-length TrkB (TrkB-FL), high-affinity receptor for brain-derived neurotrophic factor, which produces a truncated protein lacking the tyrosine-kinase domain and strikingly similar to the inactive TrkB-T1 isoform and (2) reverse regulation of the mRNA of these isoforms. Collectively, excitotoxicity results in a decrease of TrkB-FL, the production of truncated TrkB-FL and the upregulation of TrkB-T1. A similar neuro-specific increase of the TrkB-T1 isoform is also observed in stroke patients. A lentivirus designed for both neuro-specific TrkB-T1 interference and increased TrkB-FL expression allows recovery of the TrkB-FL/TrkB-T1 balance and protects neurons from excitotoxic death. These data implicate a combination of TrkB-FL downregulation and TrkB-T1 upregulation as significant causes of neuronal death in excitotoxicity, and reveal novel targets for the design of stroke therapies.
Project description:Several lines of evidence demonstrate that oxidative stress is involved in the pathogenesis of neurodegenerative diseases, including Parkinson's disease. Potent antioxidants may therefore be effective in the treatment of such diseases. Cabergoline, a dopamine D2 receptor agonist and antiparkinson drug, has been studied using several cell types including mesencephalic neurons, and is recognized as a potent radical scavenger. Here, we examined whether cabergoline exerts neuroprotective effects against oxidative stress through a receptor-mediated mechanism in cultured cortical neurons. We found that neuronal death induced by H?O? exposure was inhibited by pretreatment with cabergoline, while this protective effect was eliminated in the presence of a dopamine D2 receptor inhibitor, spiperone. Activation of ERK1/2 by H?O? was suppressed by cabergoline, and an ERK signaling pathway inhibitor, U0126, similarly protected cortical neurons from cell death. This suggested the ERK signaling pathway has a critical role in cabergoline-mediated neuroprotection. Furthermore, increased extracellular levels of glutamate induced by H?O?, which might contribute to ERK activation, were reduced by cabergoline, while inhibitors for NMDA receptor or L-type Ca²? channel demonstrated a survival effect against H?O?. Interestingly, we found that cabergoline increased expression levels of glutamate transporters such as EAAC1. Taken together, these results suggest that cabergoline has a protective effect on cortical neurons via a receptor-mediated mechanism including repression of ERK1/2 activation and extracellular glutamate accumulation induced by H?O?.
Project description:Protein-protein interactions involve hotspots as small as 4 sequential amino acids. Corresponding tetrapeptides have no structure in water. Here we report linking side chains of amino acids X and Z to form 24 cyclic tetrapeptides, cyclo-[XAAZ]-NH2, and stabilise 14-18 membered rings that mimic different kinds of non-regular secondary structures found in protein hotspots. 2D NMR spectra allowed determination of 3D structures for 14 cyclic tetrapeptides in water. Five formed two (i, i + 3) hydrogen bonds and a beta/gamma (6, 7) or beta (9, 19, 20) turn; eight formed one (i, i + 4) hydrogen bond and twisted into a non-helical (13, 18, 21, 22, 24) or helical (5, 17, 23) alpha turn; one was less structured (15). A beta or gamma turn was favoured for Z = Dab, Orn or Glu due to a ?1 gauche (+) rotamer, while an alpha turn was favoured for Z = Dap (but not X = Dap) due to a gauche (-) rotamer. Surprisingly, an unstructured peptide ARLARLARL could be twisted into a helix when either a helical or non-helical alpha turn (5, 13, 17, 18, 21-24) with Z = Dap was attached to the N-terminus. These structural models provide insights into stability for different turns and twists corresponding to non-regular folds in protein hotspots.