Project description:BackgroundNon-invasive reporter systems are powerful tools to query physiological and transcriptional responses in organisms. For example, fluorescent and bioluminescent reporters have revolutionized cellular and organismal assays and have been used to study plant responses to abiotic and biotic stressors. Integrated, cooled charge-coupled device (CCD) camera systems have been developed to image bioluminescent and fluorescent signals in a variety of organisms; however, these integrated long-term imaging systems are expensive.ResultsWe have developed self-assembled systems for both growing and monitoring plant fluorescence and bioluminescence for long-term experiments under controlled environmental conditions. This system combines environmental growth chambers with high-sensitivity CCD cameras, multi-wavelength LEDs, open-source software, and several options for coordinating lights with imaging. This easy-to-assemble system can be used for short and long-term imaging of bioluminescent reporters, acute light-response, circadian rhythms, delayed fluorescence, and fluorescent-protein-based assays in vivo.ConclusionsWe have developed two self-assembled imaging systems that will be useful to researchers interested in continuously monitoring in vivo reporter systems in various plant species.
Project description:Spectrally separated fluorophores allow the observation of multiple targets simultaneously inside living cells, leading to a deeper understanding of the molecular interplay that regulates cell function and fate. Chemogenetic systems combining a tag and a synthetic fluorophore provide certain advantages over fluorescent proteins since there is no requirement for chromophore maturation. Here, we present the engineering of a set of spectrally orthogonal fluorogen-activating tags based on the fluorescence-activating and absorption shifting tag (FAST) that are compatible with two-color, live-cell imaging. The resulting tags, greenFAST and redFAST, demonstrate orthogonality not only in their fluorogen recognition capabilities, but also in their one- and two-photon absorption profiles. This pair of orthogonal tags allowed the creation of a two-color cell cycle sensor capable of detecting very short, early cell cycles in zebrafish development and the development of split complementation systems capable of detecting multiple protein-protein interactions by live-cell fluorescence microscopy.
Project description:Fluorescent reporters have facilitated non-invasive imaging in multiple plant species and thus allowed the analysis of processes ranging from gene expression and protein localization to cellular patterning. However, in rice, a globally important crop and model species, there are relatively few reports of fluorescent proteins being used in leaves. Fluorescence imaging is particularly difficult in the rice leaf blade, likely due to a high degree of light scattering in this tissue. To address this, we investigated approaches to improve deep imaging in mature rice leaf blades. We found that ClearSee treatment, which has previously been used to visualize fluorescent reporters in whole tissues of plants, led to improved imaging in rice. Removing epidermal and subtending mesophyll cell layers was faster than ClearSee and also reduced light scattering such that imaging of fluorescent proteins in deeper leaf layers was possible. To expand the range of fluorescent proteins suitable for imaging in rice, we screened twelve whose spectral profiles spanned most of the visible spectrum. This identified five proteins (mTurquoise2, mNeonGreen, mClover3, mKO?, and tdTomato) that are robustly expressed and detectable in mesophyll cells of stably transformed plants. Using microparticle bombardment, we show that mTurquoise2 and mNeonGreen can be used for simultaneous multicolor imaging of different subcellular compartments. Overall, we conclude that mTurquoise2, mNeonGreen, mClover3, mKO?, and tdTomato are suitable for high-resolution live imaging of rice leaves, both after transient and stable transformation. Along with the rapid microparticle bombardment method, which allows transient transformation of major cell types in the leaf blade, these fluorescent reporters should greatly facilitate the analysis of gene expression and cell biology in rice.
Project description:In?vivo optical imaging must contend with the limitations imposed by the optical window of tissue (600-1000?nm). Although a wide array of fluorophores are available that are visualized in the red and near-IR region of the spectrum, with the exception of proteases, there are few long wavelength probes for enzymes. This situation poses a particular challenge for studying the intracellular biochemistry of erythrocytes, the high hemoglobin content of which optically obscures subcellular monitoring at wavelengths less than 600?nm. To address this, tunable fluorescent reporters for protein kinase activity were developed. The probing wavelength is preprogrammed by using readily available fluorophores, thereby enabling detection within the optical window of tissue, specifically in the far-red and near-IR region. These agents were used to monitor endogenous cAMP-dependent protein kinase activity in erythrocyte lysates and in intact erythrocytes when using a light-activatable reporter.
Project description:In order to analyze how a signal transduction network converts cellular inputs into cellular outputs, ideally one would measure the dynamics of many signals within the network simultaneously. We found that, by fusing a fluorescent reporter to a pair of self-assembling peptides, it could be stably clustered within cells at random points, distant enough to be resolved by a microscope but close enough to spatially sample the relevant biology. Because such clusters, which we call signaling reporter islands (SiRIs), can be modularly designed, they permit a set of fluorescent reporters to be efficiently adapted for simultaneous measurement of multiple nodes of a signal transduction network within single cells. We created SiRIs for indicators of second messengers and kinases and used them, in hippocampal neurons in culture and intact brain slices, to discover relationships between the speed of calcium signaling, and the amplitude of PKA signaling, upon receiving a cAMP-driving stimulus.
Project description:Pseudomonas aeruginosa thrives in the airways of individuals with cystic fibrosis, in part by forming robust biofilms that are resistant to immune clearance or antibiotic treatment. In the cystic fibrosis lung, the thickened mucus layers create an oxygen gradient, often culminating with the formation of anoxic pockets. In this environment, P. aeruginosa can use nitrate instead of oxygen to grow. Current fluorescent reporters for studying P. aeruginosa are limited to the GFP and related analogs. However, these reporters require oxygen for the maturation of their chromophore, making them unsuitable for the study of anaerobically grown P. aeruginosa. To overcome this limitation, we evaluated seven alternative fluorescent proteins, including iLOV, phiLOV2.1, evoglow-Bs2, LucY, UnaG, Fluorescence-Activating and Absorption-Shifting Tag (FAST), and iRFP670, which have been reported to emit light under oxygen-limiting conditions. We generated a series of plasmids encoding these proteins and validated their fluorescence using plate reader assays and confocal microscopy. Six of these proteins successfully labeled P. aeruginosa in anoxia. In particular, phiLOV2.1 and FAST provided superior fluorescence stability and enabled dual-color imaging of both planktonic and biofilm cultures. This study provides a set of fluorescent reporters for monitoring P. aeruginosa under low-oxygen conditions. These reporters will facilitate studies of P. aeruginosa in biofilms or other contexts relevant to its pathogenesis, such as those found in cystic fibrosis airways. Due to the broad host range of our expression vector, the phiLOV2.1 and FAST-based reporters may be applicable to the study of other Gram-negative bacteria that inhabit similar low-oxygen niches.
Project description:Fluorescent membrane voltage indicators that enable optical imaging of neuronal circuit operations in the living mammalian brain are powerful tools for biology and particularly neuroscience. Classical voltage-sensitive dyes, typically low molecular-weight organic compounds, have been in widespread use for decades but are limited by issues related to optical noise, the lack of generally applicable procedures that enable staining of specific cell populations, and difficulties in performing imaging experiments over days and weeks. Genetically encoded voltage indicators (GEVIs) represent a newer alternative that overcomes several of the limitations inherent to classical voltage-sensitive dyes. We critically review the fundamental concepts of this approach, the variety of available probes and their state of development.
Project description:Enzyme-based tags attached to a protein-of-interest (POI) that react with a small molecule, rendering the conjugate fluorescent, are very useful for studying the POI in living cells. These tags are typically based on endogenous enzymes, so protein engineering is required to ensure that the small-molecule probe does not react with the endogenous enzyme in the cell of interest. Here we demonstrate that de novo-designed enzymes can be used as tags to attach to POIs. The inherent bioorthogonality of the de novo-designed enzyme-small-molecule probe reaction circumvents the need for protein engineering, since these enzyme activities are not present in living organisms. Herein, we transform a family of de novo-designed retroaldolases into variable-molecular-weight tags exhibiting fluorescence imaging, reporter, and electrophoresis applications that are regulated by tailored, reactive small-molecule fluorophores.
Project description:Biocompatible peptide-based supramolecular hydrogel has recently emerged as a new and promising system for biomedical applications. In this work, Rhodamine B is employed as a new capping group of self-assembling peptide, which not only provides the driving force for supramolecular nanofibrous hydrogel formation, but also endows the hydrogel with intrinsic fluroescence signal, allowing for various bioimaging applications. The fluorescent peptide nanofibrous hydrogel can be formed via disulfide bond reduction. After dilution of the hydrogel with aqueous solution, the fluorescent nanofiber suspension can be obtained. The resultant nanofibers are able to be internalized by the cancer cells and effectively track the HeLa cells for as long as 7 passages. Using a tumor-bearing mouse model, it is also demonstrated that the fluorescent supramolecular nanofibers can serve as an efficient probe for tumor imaging in a high-contrast manner.
Project description:High spatial resolution, low background, and deep tissue penetration have made near-infrared II (NIR-II) fluorescence imaging one of the most critical tools for in vivo observation and measurement. However, the relatively short retention time and potential toxicity of synthetic NIR-II fluorophores limit their long-term application. Here, we report the use of infrared fluorescent proteins (iRFPs) as in vitro and in vivo NIR-II probes permitting prolonged continuous imaging (up to 15 months). As a representative example, iRFP713 is knocked into the mouse genome to generate a transgenic model to allow temporal and/or spatial expression control of the probe. To demonstrate its feasibility in a genuine diagnostic context, we adopt two liver regeneration models and successfully track the process for a week. The performance and monitoring efficacy are comparable to those of μCT and superior to those of indocyanine green dye. We are also able to effectively observe the pancreas, despite its deep location, under both physiological and pathological conditions. These results indicate that the iRFP-assisted NIR-II fluorescence system is suitable for monitoring various tissues and in vivo biological processes, providing a powerful noninvasive long-term imaging platform.