Project description:The mechanisms regulating exhaustion of tumor-infiltrating lymphocytes (TIL) and responsiveness to PD-1 blockade remain partly unknown. In human ovarian cancer, we show that tumor-specific CD8+ TIL accumulate in tumor islets, where they engage antigen and upregulate PD-1, which restrains their functions. Intraepithelial PD-1+CD8+ TIL can be, however, polyfunctional. PD-1+ TIL indeed exhibit a continuum of exhaustion states, with variable levels of CD28 costimulation, which is provided by antigen-presenting cells (APC) in intraepithelial tumor myeloid niches. CD28 costimulation is associated with improved effector fitness of exhausted CD8+ TIL and is required for their activation upon PD-1 blockade, which also requires tumor myeloid APC. Exhausted TIL lacking proper CD28 costimulation in situ fail to respond to PD-1 blockade, and their response may be rescued by local CTLA-4 blockade and tumor APC stimulation via CD40L.
Project description:The local mechanisms regulating exhaustion of tumor-infiltrating lymphocytes (TILs) and responsiveness to PD-1 blockade remain partly elucidated. In human ovarian cancer we show that tumor-reactive intraepithelial (ie)CD8+ TILs engaged by antigen are polyfunctional and upregulate PD-1, which restrains their effectiveness. PD-1+ TILs exhibit a continuum of TCR-engaged/exhausted states with variable effector fitness related to CD28 costimulation, which they receive in intraepithelial niches involving myeloid antigen-presenting cells (mAPC). Following PD-1 blockade, activation of TILs requires CD28 costimulation mediated in situ by tumor mAPCs, which is locally enhanced by CTLA-4 blockade. CD40 ligand also amplifies TIL responses in situ, especially in tumors in which mAPCs are not activated. Thus, dysfunctional and exhausted TILs, in a state of TCR engagement but without proper CD28 costimulation by mAPCs in situ, are unlikely to fully benefit from PD-1 blockade.
Project description:The connection between innate and adaptive immunity is best exemplified by antigen presentation. Although antigen-presenting cells (APCs) are required for antigen receptor-mediated T-cell activation, how T-cells feedback to APCs to sustain an antigen-specific immune response is not completely clear. Here we show that CD8+ T-cell (also called cytotoxic T lymphocytes, CTL) feedback activates the NLRP3 inflammasome in APCs in an antigen-dependent manner to promote IL-1β maturation. Perforin from antigen-specific CTLs is required for NLRP3 inflammasome activation in APCs. Furthermore, such activation of NLRP3 inflammasome contributes to the induction of antigen-specific antitumour immunity and pathogenesis of graft-versus-host diseases. Our study reveals a positive feedback loop between antigen-specific CTLs and APC to amplify adaptive immunity.
Project description:Human Vγ9Vδ2 T cells have attracted considerable attention as novel alternative antigen-presenting cells (APCs) with the potential to replace dendritic cells in antitumor immunotherapy owing to their high proliferative capacity and low cost. However, the utility of γδ T cells as APCs to induce CD8+ T cell-mediated antitumor immune response, as well as the mechanism by which they perform APC functions, remains unexplored. In this study, we found that activated Vγ9Vδ2 T cells were capable of inducing robust CD8+ T cell responses in osteosarcoma cells. Activated γδ T cells also effectively suppressed osteosarcoma growth by priming CD8+ T cells in xenograft animal models. Mechanistically, we further revealed that activated γδ T cells exhibited increased HSP90 production, which fed back to upregulate MyD88, followed by JNK activation and a subsequent improvement in CCL5 secretion, leading to enhanced CD8+ T cell cross-priming. Thus, our study suggests that Vγ9Vδ2 T cells represent a promising alternative APC for the development of γδ T cell-based tumor immunotherapy.
Project description:During persistent antigen stimulation, such as in chronic infections and cancer, CD8 T cells differentiate into a hypofunctional programmed death protein 1-positive (PD-1+) exhausted state. Exhausted CD8 T cell responses are maintained by precursors (Tpex) that express the transcription factor T cell factor 1 (TCF-1) and high levels of the costimulatory molecule CD28. Here, we demonstrate that sustained CD28 costimulation is required for maintenance of antiviral T cells during chronic infection. Low-level CD28 engagement preserved mitochondrial fitness and self-renewal of Tpex, whereas stronger CD28 signaling enhanced glycolysis and promoted Tpex differentiation into TCF-1neg exhausted CD8 T cells (Tex). Furthermore, enhanced differentiation by CD28 engagement did not reduce the Tpex pool. Together, these findings demonstrate that continuous CD28 engagement is needed to sustain PD-1+ CD8 T cells and suggest that increasing CD28 signaling promotes Tpex differentiation into more functional effector-like Tex, possibly without compromising long-term responses.
Project description:The natural killer (NK) group 2D (NKG2D) receptor, which displays on mouse and human NK cells, activates CD8+ T cells and small subsets of other T cells. NKG2D+CD8+ T cells play critical roles in both innate and adaptive immunity upon engagement with NKG2D ligands to eliminate tumor and infected cells. Despite the important role of NKG2D+CD8+ T cells in immune surveillance, the mechanisms of how NKG2D expression on CD8+ T cells is regulated remain poorly defined. We treated mouse and human CD8+ T cells with CD80 recombinant protein, plus a pharmacologic model with small molecular inhibitors to determine which signaling pathway leads to NKG2D regulation on CD8+T cells. This study revealed that CD28 activation gives rise to sustained NKG2D expression on both mouse and human CD8+ T cells in a signal transducer and activator of transcription 3 (STAT3) phosphorylation-dependent manner. Further, we found that CD28 activation stimulated sustained activation of the tyrosine kinase Lck, which recruits and triggers Janus kinase/STAT3 signaling to phosphorylate STAT3, and in turn increases NKG2D expression. Moreover, NKG2D induction on CD8+ T cells exerts cytolytic activity against target tumor cells in vitro, as well as significantly improves the antitumor therapeutic effects in vivo in an NKG2D-dependent manner. Taken together, these results elucidated a novel mechanism of NKG2D regulation by phosphorylated STAT3 (pSTAT3) on CD8+ T cells upon CD28 activation. This mechanism may shed light on the effectiveness of CD80-based, NKG2D-dependent antitumor immunotherapy.
Project description:Understanding the spatial relationship and functional interaction of immune cells in glioblastoma (GBM) is critical for developing new therapeutics that overcome the highly immunosuppressive tumor microenvironment. Our study showed that B and T cells form clusters within the GBM microenvironment within a 15-μm radius, suggesting that B and T cells could form immune synapses within the GBM. However, GBM-infiltrating B cells suppress the activation of CD8+ T cells. To overcome this immunosuppression, we leveraged B-cell functions by activating them with CD40 agonism, IFNγ, and BAFF to generate a potent antigen-presenting B cells named BVax. BVax had improved antigen cross-presentation potential compared to naïve B cells and were primed to use the IL15-IL15Ra mechanism to enhance T cell activation. Compared to naïve B cells, BVax could improve CD8 T cell activation and proliferation. Compared to dendritic cells (DCs), which are the current gold standard professional antigen-presenting cell, BVax promoted highly proliferative T cells in-vitro that had a stem-like memory T cell phenotype characterized by CD62L+CD44- expression, high TCF-1 expression, and low PD-1 and granzyme B expression. Adoptive transfer of BVax-activated CD8+ T cells into tumor-bearing brains led to T cell reactivation with higher TCF-1 expression and elevated granzyme B production compared to DC-activated CD8+ T cells. Adoptive transfer of BVax into an irradiated immunocompetent tumor-bearing host promoted more CD8+ T cell proliferation than adoptive transfer of DCs. Moreover, highly proliferative CD8+ T cells in the BVax group had less PD-1 expression than those highly proliferative CD8+ T cells in the DC group. The findings of this study suggest that BVax and DC could generate distinctive CD8+ T cells, which potentially serve multiple purposes in cellular vaccine development.
Project description:Accumulating evidence suggests that inhibiting adenosine-generating ecto-enzymes (CD39 and CD73) and/or adenosine A2A or A2B receptors (R) stimulates antitumor immunity and limits tumor progression. Although activating A2ARs or A2BRs causes similar immunosuppressive and protumoral functions, few studies have investigated the distinct role of A2BR in cancer. Here, we showed that A2BR expression by hematopoietic cells was primarily responsible for promoting tumor growth. Deletion of A2BR profoundly enhanced anticancer T-cell immunity. Although T-cell A2BR plays an insignificant role for A2BR-mediated immunosuppression and tumor promotion, A2BR deficiency in tumor-bearing mice caused increased infiltration of myeloid and CD103+ dendritic cells, which was associated with more effective cross-priming of adoptively transferred tumor antigen-specific CD8+ T cells. A2BR deletion also intrinsically favored accumulation of myeloid and CD11bdim antigen-presenting cells (APC) in the tumor microenvironment. Both myeloid-specific or CD11c-specific conditional deletion of A2BR delayed primary tumor growth. Myeloid, but not CD11c-specific conditional, depletion delayed lung metastasis. Pharmacologic blockade of A2BR improved the antitumor effect of adoptive T-cell therapy. Overall, these results suggested that A2BR expression on myeloid cells and APCs indirectly suppressed CD8+ T-cell responses and promoted metastasis. These data provide a strong rationale to combine A2BR inhibition with T-cell-based immunotherapy for the treatment of tumor growth and metastasis.