Bacterial peptidoglycan muropeptides benefit mitochondrial homeostasis and animal physiology by acting as ATP synthase agonists.
Ontology highlight
ABSTRACT: The symbiotic relationship between commensal microbes and host animals predicts unidentified beneficial impacts of individual bacterial metabolites on animal physiology. Peptidoglycan fragments (muropeptides) from the bacterial cell wall are known for their roles in pathogenicity and for inducing host immune responses. However, the potential beneficial usage of muropeptides from commensal bacteria by the host needs exploration. We identified a striking role for muropeptides in supporting mitochondrial homeostasis, development, and behaviors in Caenorhabditis elegans. We determined that the beneficial molecules are disaccharide muropeptides containing a short AA chain, and they enter intestinal-cell mitochondria to repress oxidative stress. Further analyses indicate that muropeptides execute this role by binding to and promoting the activity of ATP synthase. Therefore, given the exceptional structural conservation of ATP synthase, the role of muropeptides as a rare agonist of the ATP synthase presents a major conceptual modification regarding the impact of bacterial cell metabolites on animal physiology.
SUBMITTER: Tian D
PROVIDER: S-EPMC8825754 | biostudies-literature | 2022 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA