Unknown

Dataset Information

0

Unveiling ultrafast dynamics in bridged bimetallic complexes using optical and X-ray transient absorption spectroscopies.


ABSTRACT: In photosynthetic systems employing multiple transition metal centers, the properties of charge-transfer states are tuned by the coupling between metal centers. Here, we use ultrafast optical and X-ray spectroscopies to elucidate the effects of metal-metal interactions in a bimetallic tetrapyridophenazine-bridged Os(ii)/Cu(i) complex. Despite having an appropriate driving force for Os-to-Cu hole transfer in the Os(ii) moiety excited state, no such charge transfer was observed. However, excited-state coupling between the metal centers is present, evidenced by variations in the Os MLCT lifetime depending on the identity of the opposite metal center. This coupling results in concerted coherent vibrations appearing in the relaxation kinetics of the MLCT states for both Cu and Os centers. These vibrations are dominated by metal-ligand contraction at the Cu/Os centers, which are in-phase and linked through the conjugated bridging ligand. This study shows how vibronic coupling between transition metal centers affects the ultrafast dynamics in bridged, multi-metallic systems from the earliest times after photoexcitation to excited-state decay, presenting avenues for tuning charge-transfer states through judicious choice of metal/ligand groups.

SUBMITTER: Mara MW 

PROVIDER: S-EPMC8827017 | biostudies-literature | 2022 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Unveiling ultrafast dynamics in bridged bimetallic complexes using optical and X-ray transient absorption spectroscopies.

Mara Michael W MW   Phelan Brian T BT   Xie Zhu-Lin ZL   Kim Tae Wu TW   Hsu Darren J DJ   Liu Xiaolin X   Valentine Andrew J S AJS   Kim Pyosang P   Li Xiaosong X   Adachi Shin-Ichi SI   Katayama Tetsuo T   Mulfort Karen L KL   Chen Lin X LX  

Chemical science 20220121 6


In photosynthetic systems employing multiple transition metal centers, the properties of charge-transfer states are tuned by the coupling between metal centers. Here, we use ultrafast optical and X-ray spectroscopies to elucidate the effects of metal-metal interactions in a bimetallic tetrapyridophenazine-bridged Os(ii)/Cu(i) complex. Despite having an appropriate driving force for Os-to-Cu hole transfer in the Os(ii) moiety excited state, no such charge transfer was observed. However, excited-s  ...[more]

Similar Datasets

| S-EPMC5873173 | biostudies-literature
| S-EPMC6648759 | biostudies-literature
| S-EPMC6222039 | biostudies-literature
| S-EPMC9198071 | biostudies-literature
| S-EPMC8855422 | biostudies-literature
| S-EPMC11311227 | biostudies-literature
| S-EPMC7846580 | biostudies-literature
| S-EPMC10421382 | biostudies-literature
| S-EPMC2744833 | biostudies-other
| S-EPMC9252321 | biostudies-literature