Project description:BACKGROUND:To investigate the potential value of volumetric iodine quantification using preoperative dual-energy computed tomography (DECT) for predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC). METHODS:This retrospective study included patients with single HCC treated through surgical resection who underwent preoperative DECT. Quantitative DECT features, including normalized iodine concentration (NIC) to the aorta and mixed-energy CT attenuation value in the arterial phase, were three-dimensionally measured for peritumoral and intratumoral regions: (i) layer-by-layer analysis for peritumoral layers (outer layers 1 and 2; numbered in close order from the tumor boundary) and intratumoral layers (inner layers 1 and 2) with 2-mm layer thickness and (ii) volume of interest (VOI)-based analysis with different volume coverage (tumor itself; VOIO1, tumor plus outer layer 1; VOIO2, tumor plus outer layers 1 and 2; VOII1, tumor minus inner layer 1; VOII2, tumor minus inner layers 1 and 2). In addition, qualitative CT features, including peritumoral enhancement and tumor margin, were assessed. Qualitative and quantitative CT features were compared between HCC patients with and without MVI. Diagnostic performance of DECT parameters of layers and VOIs was assessed using receiver operating characteristic curve analysis. RESULTS:A total of 36 patients (24 men, mean age 59.9 ± 8.5 years) with MVI (n = 14) and without MVI (n = 22) were included. HCCs with MVI showed significantly higher NICs of outer layer 1, outer layer 2, VOIO1, and VOIO2 than those without MVI (P = 0.01, 0.04, 0.02, 0.02, respectively). Among the NICs of layers and VOIs, the highest area under the curve was obtained in outer layer 1 (0.747). Qualitative features, including peritumoral enhancement and tumor margin, and the mean CT attenuation of each layer and each VOI were not significantly different between HCCs with and without MVI (both P > 0.05). CONCLUSIONS:Volumetric iodine quantification of peritumoral and intratumoral regions in arterial phase using DECT may help predict the MVI of HCC.
Project description:Pulmonary artery intimal sarcomas (PAIS) are often misdiagnosed as pulmonary embolisms (PE) as their clinical findings and imaging findings are similar. However, given the clinical outcome of both diseases is different in its prognosis, accurate and rapid diagnosis is mandatory. This is a case report of a histologically-proven PAIS which was initially treated as a PE. The color-coded iodine map using dual-energy computed tomography (dual-energy CT iodine map) well reflected the distribution of the tumor consistent with 18fluoro-2-deoxyglucose-uptake region using positron emission tomography/CT. This case demonstrates the potential of using dual-energy CT iodine map to differentiate PAIS from PE.Learning objectiveUse of a dual-energy computed tomography iodine map to visualize a pulmonary artery intimal sarcoma may provide useful diagnostic information.
Project description:BackgroundThe proximal humerus is a common site of osteoporotic fractures, and bone quality is a predictor of surgical reduction quality. Dual-energy computed tomography (DECT) is assuming an increasingly important role in the quantification of bone mineral density (BMD) due it is ability to perform three-material decomposition. We aimed to analyze the bone quality and distribution of the proximal humerus with DECT quantitatively.MethodsSixty-five consecutive patients (average age 49.5±15.2 years; male: female ratio 32:33) without proximal humerus fractures who had undergone DECT were retrospectively selected. The humeral head was divided into 4 regions on a cross section in the medial plane between the greater tuberosity and the surgical neck. The quantitative parameters, including virtual noncalcium (VNCa) value, computed tomography value of calcium (CaCT), computed tomography value of mixed-energy images (regular CT value) (rCT), and relative calcium density (rCaD), were measured. The correlations between the quantitative parameters and age and body mass index (BMI) were analyzed, and the correlations of age, sex, BMI, region of the humeral head, and VNCa value on CaCT were evaluated.ResultsThe differences in CaCT, rCT, and rCaD between the 4 regions of proximal humerus were statistically significant (P<0.001), while the difference in VNCa values was not (P=0.688). The calcium concentration (CaCT and rCaD) was the densest in the posteromedial zone. The differences of CaCT, rCT, and rCaD between males and females in the 4 regions of proximal humerus were statistically significant (P<0.05), while those of the posterolateral zone were not (rCT; P>0.05). The differences in VNCa values between males and females were also not significant (P>0.05). Multivariable linear regression analysis indicated that sex, age, BMI, regions, and VNCa were significant (P<0.05) predictors of the CaCT value.ConclusionsThe concentration of calcium was the densest in the posteromedial region of proximal humerus, and the VNCa value of DECT may be used for quantifying the BMD of the proximal humerus.
Project description:Extracting coronary artery calcium (CAC) scores from contrast-enhanced computed tomography (CT) images using dual-energy (DE) based material decomposition has been shown feasible, mainly through patient studies. However, the quantitative performance of such DE-based CAC scores, particularly per stenosis, is underexamined due to lack of reference standard and repeated scans. In this work we conducted a comprehensive quantitative comparative analysis of CAC scores obtained with DE and compare to conventional unenhanced single-energy (SE) CT scans through phantom studies. Synthetic vessels filled with iodinated blood mimicking material and containing calcium stenoses of different sizes and densities were scanned with a third generation dual-source CT scanner in a chest phantom using a DE coronary CT angiography protocol with three exposures/CTDIvol: auto-mAs/8 mGy (automatic exposure), 160 mAs/20 mGy and 260 mAs/34 mGy and 10 repeats. As a control, a set of vessel phantoms without iodine was scanned using a standard SE CAC score protocol (3 mGy). Calcium volume, mass and Agatston scores were estimated for each stenosis. For DE dataset, image-based three-material decomposition was applied to remove iodine before scoring. Performance of DE-based calcium scores were analyzed on a per-stenosis level and compared to SE-based scores. There was excellent correlation between the DE- and SE-based scores (correlation coefficient r: 0.92-0.98). Percent bias for the calcium volume and mass scores varied as a function of stenosis size and density for both modalities. Precision (coefficient of variation) improved with larger and denser stenoses for both DE- and SE-based calcium scores. DE-based scores (20 mGy and 34 mGy) provided comparable per-stenosis precision to SE-based (3 mGy). Our findings suggest that on a per-stenosis level, DE-based CAC scores from contrast-enhanced CT images can achieve comparable quantification performance to conventional SE-based scores. However, DE-based CAC scoring required more dose compared with SE for high per-stenosis precision so some caution is necessary with clinical DE-based CAC scoring.
Project description:BackgroundThe accumulation of macrophages in inflamed atherosclerotic plaques has long been recognized. In an attempt to develop an imaging agent for detection of vulnerable plaques, we evaluated the feasibility of a liposomal-iodine nanoparticle contrast agent for computed tomography imaging of macrophage-rich atherosclerotic plaques in a mouse model.Methods and resultsLiposomal-iodine formulations varying in particle size and polyethylene glycol coating were fabricated and shown to stably encapsulate the iodine compound. In vitro uptake studies using optical and computed tomography imaging in the RAW 264.7 macrophage cell line identified the formulation that promoted maximal uptake. Dual-energy computed tomography imaging using this formulation in apolipoprotein E-deficient (ApoE(-/-)) mice (n=8) and control C57BL/6 mice (n=6) followed by spectral decomposition of the dual-energy images enabled imaging of the liposomes localized in the plaque. Imaging cytometry confirmed the presence of liposomes in the plaque and their colocalization with a small fraction (≈2%) of the macrophages in the plaque.ConclusionsThe results demonstrate the feasibility of imaging macrophage-rich atherosclerotic plaques using a liposomal-iodine nanoparticle contrast agent and dual-energy computed tomography.
Project description:Contrast-enhanced imaging for choroidal malignant melanoma (CMM) is mostly limited to detecting metastatic tumors, possibly due to difficulties in fixing the eye position. We aimed to (1) validate the appropriateness of estimating iodine concentration based on dual-energy computed tomography (DECT) for CMM and optimize the calculation parameters for estimation, and (2) perform a primary clinical validation by assessing the ability of this technique to show changes in CMM after charged-particle radiation therapy. The accuracy of the optimized estimate (eIC_optimized) was compared to an estimate obtained by commercial software (eIC_commercial) by determining the difference from the ground truth. Then, eIC_optimized, tumor volume, and CT values (80 kVp, 140 kVp, and synthesized 120 kVp) were measured at pre-treatment and 3 months and 1.5-2 years after treatment. The difference from the ground truth was significantly smaller in eIC_optimized than in eIC_commercial (p < 0.01). Tumor volume, CT values, and eIC_optimized all decreased significantly at 1.5-2 years after treatment, but only eIC_commercial showed a significant reduction at 3 months after treatment (p < 0.01). eIC_optimized can quantify contrast enhancement in primary CMM lesions and has high sensitivity for detecting the response to charged-particle radiation therapy, making it potentially useful for treatment monitoring.
Project description:PurposeVirtual monoenergetic images (VMIs) derived from dual-energy computed tomography (DECT) have been explored for several clinical applications in recent years. However, VMIs at low and high keVs have high levels of noise. The aim of this study was to reduce image noise in VMIs by using a two-step noise reduction technique.MethodsVMI was first denoised using a modified highly constrained backprojection (HYPR) method. After the first-step denoising, a general-threshold filtering method was performed. Two sets of anthropomorphic phantoms were scanned with a clinical dual-source DECT system. DECT data (80/140Sn kV) were reconstructed as VMI series at 12 different energy levels (range, 40-150 keV, interval, 10 keV). For comparison, the averaged VMIs obtained from 10 repeated DECT scans were used as the reference standard. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and root-mean-square error (RMSE) were used to evaluate the quality of VMIs.ResultsCompared to the original HYPR method, the proposed two-step image denoising method could provide better performance in terms of SNR, CNR, and RMSE. In addition, the proposed method could achieve effective noise reduction while preserving edges and small structures, especially for low-keV VMIs.ConclusionThe proposed two-step image denoising method is a feasible method for reducing noise in VMIs obtained from a clinical DECT scanner. The proposed method can also reduce edge blurring and the loss of intensity in small lesions.
Project description:Dual-energy computed tomography (DECT) can estimate tissue vascularity and perfusion via iodine quantification. The aim of this systematic review was to outline current and emerging clinical applications of iodine quantification within the gastrointestinal tract using DECT. The search was conducted with three databases: EMBASE, Pubmed and The Cochrane Library. This identified 449 studies after duplicate removal. From a total of 570 selected studies, 30 studies were enrolled for the systematic review. The studies were categorized into four main topics: gastric tumors (12 studies), colorectal tumors (8 studies), Crohn's disease (4 studies) and miscellaneous applications (6 studies). Findings included a significant difference in iodine concentration (IC) measurements in perigastric fat between T1-3 vs. T4 stage gastric cancer, poorly and well differentiated gastric and colorectal cancer, responders vs. non-responders following chemo- or chemoradiotherapy treatment among cancer patients, and a positive correlation between IC and Crohn's disease activity. In conclusion, iodine quantification with DECT may be used preoperatively in cancer imaging as well as for monitoring treatment response. Future studies are warranted to evaluate the capabilities and limitations of DECT in splanchnic flow.
Project description:To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques.Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic thoracic phantom. Adding two phantom rings simulated increased patient size. For third-generation dual source CT (DSCT), tube voltage combinations of 150Sn and 70, 80, 90, 100 kVp were analysed. For dual layer CT (DLCT), 120 and 140 kVp were used. Scans were repeated three times. Median normalized values and interquartile ranges (IQRs) were calculated for all kVp settings and phantom sizes.Correlation between measured and known iodine concentrations was excellent for both systems (R = 0.999-1.000, p < 0.0001). For DSCT, median measurement errors ranged from -0.5% (IQR -2.0, 2.0%) at 150Sn/70 kVp and -2.3% (IQR -4.0, -0.1%) at 150Sn/80 kVp to -4.0% (IQR -6.0, -2.8%) at 150Sn/90 kVp. For DLCT, median measurement errors ranged from -3.3% (IQR -4.9, -1.5%) at 140 kVp to -4.6% (IQR -6.0, -3.6%) at 120 kVp. Larger phantom sizes increased variability of iodine measurements (p < 0.05).Iodine concentration can be accurately quantified with state-of-the-art DECT systems from two vendors. The lowest absolute errors were found for DSCT using the 150Sn/70 kVp or 150Sn/80 kVp combinations, which was slightly more accurate than 140 kVp in DLCT.• High-end CT scanners allow accurate iodine quantification using different DECT techniques. • Lowest measurement error was found in scans with largest photon energy separation. • Dual-source CT quantified iodine slightly more accurately than dual layer CT.