Project description:Telomere biology disorders (TBD) are a heterogeneous group of diseases arising from germline mutations affecting genes involved in telomere maintenance. Telomeres are DNA-protein structures at chromosome ends that maintain chromosome stability; their length affects cell replicative potential and senescence. A constellation of bone marrow failure, pulmonary fibrosis, liver cirrhosis and premature greying is suggestive, however incomplete penetrance results in highly variable manifestations, with idiopathic pulmonary fibrosis as the most common presentation. Currently, the true extent of TBD burden is unknown as there is no established diagnostic criteria and the disorder often is unrecognised and underdiagnosed. There is no gold standard for measuring telomere length and not all TBD-related mutations have been identified. There is no specific cure and the only treatment is organ transplantation, which has poor outcomes. This review summarises the current literature and discusses gaps in understanding and areas of need in managing TBD.
Project description:Numerous genetic discoveries and the advent of clinical telomere length testing have led to the recognition of a spectrum of telomere biology disorders (TBDs) beyond the classic dyskeratosis congenita (DC) triad of nail dysplasia, abnormal skin pigmentation, and oral leukoplakia occurring with pediatric bone marrow failure. Patients with DC/TBDs have very short telomeres for their age and are at high risk of bone marrow failure, cancer, pulmonary fibrosis (PF), pulmonary arteriovenous malformations, liver disease, stenosis of the urethra, esophagus, and/or lacrimal ducts, avascular necrosis of the hips and/or shoulders, and other medical problems. However, many patients with TBDs do not develop classic DC features; they may present in middle age and/or with just 1 feature, such as PF or aplastic anemia. TBD-associated clinical manifestations are progressive and attributed to aberrant telomere biology caused by the X-linked recessive, autosomal dominant, autosomal recessive, or de novo occurrence of pathogenic germline variants in at least 18 different genes. This review describes the genetics and clinical manifestations of TBDs and highlights areas in need of additional clinical and basic science research.
Project description:Clonal hematopoiesis (CH) in inherited bone marrow failure (BMF) is disease-specific but has been poorly characterized in telomere biology disorders (TBD).We studied the architecture, trajectories, and impact of CH in a cohort of 207 TBD patients and assessed the clinical relevance of molecular signatures linked to telomere dysfunction. Most patients (92%) had known germline mutations in TBD genes. CH was rare in asymptomatic but present in 46% of symptomatic patients, recurrently in PPM1D, POT1, TERT promoter (TERTp), and U2AF1. CH frequency increased with age and was significantly higher than in age- matched controls. CH in PPM1D/TERTp was enriched in TERT patients while CH in POT1 was enriched in TINF2 patients. CH in myelodysplastic syndromes (MDS)-related genes, most commonly splicing factors, was enriched in TERT/TERC patients. CH in TERTp, TP53 ̧ and MDS- related genes associated with poorer survival. Chromosome 1q (Chr1q) gain, and splicing factor gene (dominated by U2AF1S34/Q157R) or TP53 mutations increased the risk of MDS/acute myeloid leukemia (AML) development, regardless of allele burden. Trajectories with successive acquisition of MDS-related CH driven by U2AF1S34/Q157R were maladaptive, while adaptive CH involved branched POT1/PPM1D/TERTp trajectories. U2AF1S34/Q157R compensated aberrant TP53 and interferon-γ pathway activation that contribute to hematopoietic stem cell exhaustion in TBD.
Project description:Variations in the length of telomeres and pathogenic variants involved in telomere length maintenance have been correlated with several human diseases. Recent breakthroughs in telomere biology knowledge have contributed to the identification of illnesses named "telomeropathies" and revealed an association between telomere length and disease outcome. This review emphasizes the biology and physiology aspects of telomeres and describes prototype diseases in which telomeres are implicated in their pathophysiology. We also provide information on the role of telomeres in hematological diseases ranging from bone marrow failure syndromes to acute and chronic leukemias.
Project description:DNA methylation profiling of 35 Telomere Biology Disorder (TBD) cases and 20 age-matched controls using the Infinium MethylationEPIC BeadChip arrays (Illumina). The cutoff for methylation differences between the cases and controls was set to |Δβ≥|0.2.
Project description:Dyskeratosis congenita related telomere biology disorders (DC/TBDs) are characterized by very short telomeres caused by germline pathogenic variants in telomere biology genes. Clinical presentations can affect all organs, and inheritance patterns include autosomal dominant (AD), autosomal recessive (AR), X-linked (XLR), or de novo. This study examined the associations between mode of inheritance with phenotypes and long-term clinical outcomes. Two hundred thirty-one individuals with DC/TBDs (144 male, 86.6% known genotype, median age at diagnosis 19.4 years [range 0 to 71.6]), enrolled in the National Cancer Institute's Inherited Bone Marrow Failure Syndrome Study, underwent detailed clinical assessments and longitudinal follow-up (median follow-up 5.2 years [range 0 to 36.7]). Patients were grouped by inheritance pattern, considering AD-nonTINF2, AR/XLR, and TINF2 variants separately. Severe bone marrow failure (BMF), severe liver disease, and gastrointestinal telangiectasias were more prevalent in AR/XLR or TINF2 disease, whereas pulmonary fibrosis developed predominantly in adults with AD disease. After adjusting for age at DC/TBD diagnosis, we observed the highest cancer risk in AR/XLR individuals. At last follow-up, 42% of patients were deceased with a median overall survival (OS) of 52.8 years (95% confidence interval [CI] 45.5-57.6), and the hematopoietic cell or solid organ transplant-free median survival was 45.3 years (95% CI 37.4-52.1). Significantly better OS was present in AD vs AR/XLR/TINF2 disease (P < .01), while patients with AR/XLR and TINF2 disease had similar survival probabilities. This long-term study of the clinical manifestations of DC/TBDs creates a foundation for incorporating the mode of inheritance into evidence-based clinical care guidelines and risk stratification in patients with DC/TBDs. This trial was registered at www.clinicaltrials.gov as #NCT00027274.
Project description:Telomere biology disorders are a complex set of illnesses defined by the presence of very short telomeres. Individuals with classic dyskeratosis congenita have the most severe phenotype, characterized by the triad of nail dystrophy, abnormal skin pigmentation, and oral leukoplakia. More significantly, these individuals are at very high risk of bone marrow failure, cancer, and pulmonary fibrosis. A mutation in one of six different telomere biology genes can be identified in 50–60% of these individuals. DKC1, TERC, TERT, NOP10, and NHP2 encode components of telomerase or a telomerase-associated factor and TINF2, a telomeric protein. Progressively shorter telomeres are inherited from generation to generation in autosomal dominant dyskeratosis congenita, resulting in disease anticipation. Up to 10% of individuals with apparently acquired aplastic anemia or idiopathic pulmonary fibrosis also have short telomeres and mutations in TERC or TERT. Similar findings have been seen in individuals with liver fibrosis or acute myelogenous leukemia. This report reviews basic aspects of telomere biology and telomere length measurement, and the clinical and genetic features of those disorders that constitute our current understanding of the spectrum of illness caused by defects in telomere biology. We also suggest a grouping schema for the telomere disorders.
Project description:Telomere Biology Disorders (TBDs) are characterized by mutations in telomere-related genes leading to short telomeres and premature aging but with no strict correlation between telomere length and disease severity. Epigenetic alterations are also markers of aging and we aimed to evaluate whether DNA methylation (DNAm) could be part of the pathogenesis of TBDs. In blood from 35 TBD cases, genome-wide DNAm were analyzed and the cases were grouped based on relative telomere length (RTL): short (S), with RTL close to normal controls, and extremely short (ES). TBD cases had increased epigenetic age and DNAm alterations were most prominent in the ES-RTL group. Thus, the differentially methylated (DM) CpG sites could be markers of short telomeres but could also be one of the mechanisms contributing to disease phenotype since DNAm alterations were observed in symptomatic, but not asymptomatic, cases with S-RTL. Furthermore, two or more DM-CpGs were identified in four genes previously linked to TBD or telomere length (PRDM8, SMC4, VARS, and WNT6) and in three genes that were novel in telomere biology (MAS1L, NAV2, and TM4FS1). The DM-CpGs in these genes could be markers of aging in hematological cells, but they could also be of relevance for the progression of TBD.
Project description:Reproductive health may be adversely impacted in women with dyskeratosis congenita (DC) and related telomere biology disorders (TBD). We evaluated gynaecological problems, fertility, and pregnancy outcomes in 39 females aged 10-81 years who were followed longitudinally in our DC/TBD cohort. Twenty-six had bone marrow failure and 12 underwent haematopoietic cell transplantation. All attained menarche at a normal age. Thirteen women reported menorrhagia; ten used hormonal contraception to reduce bleeding. Nine experienced natural normal-aged menopause. Gynaecological problems (endometriosis = 3, pelvic varicosities = 1, cervical intraepithelial neoplasia = 1, and uterine prolapse = 2) resulted in surgical menopause in seven. Twenty-five of 26 women attempting fertility carried 80 pregnancies with 49 (61%) resulting in livebirths. Ten (38%) women experienced 28 (35%) miscarriages, notably recurrent pregnancy loss in five (19%). Preeclampsia (n = 6, 24%) and progressive cytopenias (n = 10, 40%) resulted in maternal-fetal compromise, including preterm (n = 5) and caesarean deliveries (n = 18, 37%). Gynaecological/reproductive problems were noted mainly in women with autosomal-dominant inheritance; others were still young or died early. Although women with TBDs had normal menarche, fertility, and menopause, gynaecological problems and pregnancy complications leading to caesarean section, preterm delivery, or transfusion support were frequent. Women with TBDs will benefit from multidisciplinary, coordinated care by haematology, gynaecology and maternal-fetal medicine.
Project description:BACKGROUND:The telomere biology disorders (TBDs) include a range of multisystem diseases characterized by mucocutaneous symptoms and bone marrow failure. In dyskeratosis congenita (DKC), the clinical features of TBDs stem from the depletion of crucial stem cell populations in highly proliferative tissues, resulting from abnormal telomerase function. Due to the wide spectrum of clinical presentations and lack of a conclusive laboratory test it may be challenging to reach a clinical diagnosis, especially if patients lack the pathognomonic clinical features of TBDs. METHODS:Clinical sequencing was performed on a cohort of patients presenting with variable immune phenotypes lacking molecular diagnoses. Hypothesis-free whole-exome sequencing (WES) was selected in the absence of compelling diagnostic hints in patients with variable immunological and haematological conditions. RESULTS:In four patients belonging to three families, we have detected five novel variants in known TBD-causing genes (DKC1, TERT and RTEL1). In addition to the molecular findings, they all presented shortened blood cell telomeres. These findings are consistent with the displayed TBD phenotypes, addressing towards the molecular diagnosis and subsequent clinical follow-up of the patients. CONCLUSIONS:Our results strongly support the utility of WES-based approaches for routine genetic diagnostics of TBD patients with heterogeneous or atypical clinical presentation who otherwise might remain undiagnosed.