Unknown

Dataset Information

0

Identification of rare, transient post-mitotic cell states that are induced by injury and required for whole-body regeneration in Schmidtea mediterranea.


ABSTRACT: Regeneration requires the coordination of stem cells, their progeny and distant differentiated tissues. Here, we present a comprehensive atlas of whole-body regeneration in Schmidtea mediterranea and identify wound-induced cell states. An analysis of 299,998 single-cell transcriptomes captured from regeneration-competent and regeneration-incompetent fragments identified transient regeneration-activated cell states (TRACS) in the muscle, epidermis and intestine. TRACS were independent of stem cell division with distinct spatiotemporal distributions, and RNAi depletion of TRACS-enriched genes produced regeneration defects. Muscle expression of notum, follistatin, evi/wls, glypican-1 and junctophilin-1 was required for tissue polarity. Epidermal expression of agat-1/2/3, cyp3142a1, zfhx3 and atp1a1 was important for stem cell proliferation. Finally, expression of spectrinβ and atp12a in intestinal basal cells, and lrrk2, cathepsinB, myosin1e, polybromo-1 and talin-1 in intestinal enterocytes regulated stem cell proliferation and tissue remodelling, respectively. Our results identify cell types and molecules that are important for regeneration, indicating that regenerative ability can emerge from coordinated transcriptional plasticity across all three germ layers.

SUBMITTER: Benham-Pyle BW 

PROVIDER: S-EPMC8855990 | biostudies-literature | 2021 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of rare, transient post-mitotic cell states that are induced by injury and required for whole-body regeneration in Schmidtea mediterranea.

Benham-Pyle Blair W BW   Brewster Carolyn E CE   Kent Aubrey M AM   Mann Frederick G FG   Chen Shiyuan S   Scott Allison R AR   Box Andrew C AC   Sánchez Alvarado Alejandro A  

Nature cell biology 20210902 9


Regeneration requires the coordination of stem cells, their progeny and distant differentiated tissues. Here, we present a comprehensive atlas of whole-body regeneration in Schmidtea mediterranea and identify wound-induced cell states. An analysis of 299,998 single-cell transcriptomes captured from regeneration-competent and regeneration-incompetent fragments identified transient regeneration-activated cell states (TRACS) in the muscle, epidermis and intestine. TRACS were independent of stem cel  ...[more]

Similar Datasets

2021-06-11 | GSE146685 | GEO
| PRJNA611616 | ENA
| S-EPMC3245616 | biostudies-literature
| S-EPMC4176530 | biostudies-literature
| S-EPMC3854530 | biostudies-literature
| S-EPMC4446096 | biostudies-literature
| S-EPMC4825013 | biostudies-literature
| S-EPMC7806912 | biostudies-literature
| S-EPMC6175859 | biostudies-literature
| S-EPMC4867232 | biostudies-literature