Unknown

Dataset Information

0

Machine learning algorithms for predicting undernutrition among under-five children in Ethiopia.


ABSTRACT:

Objective

Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms.

Design

This study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were considered to predict the socio-demographic risk factors for undernutrition in Ethiopia.

Setting

Households in Ethiopia.

Participants

A total of 9471 children below 5 years of age participated in this study.

Results

The descriptive results show substantial regional variations in child stunting, wasting and underweight in Ethiopia. Also, among the five ML algorithms, xgbTree algorithm shows a better prediction ability than the generalised linear mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important predictors of undernutrition across the three outcomes which include time to water source, anaemia history, child age greater than 30 months, small birth size and maternal underweight, among others.

Conclusions

The xgbTree algorithm was a reasonably superior ML algorithm for predicting childhood undernutrition in Ethiopia compared to other ML algorithms considered in this study. The findings support improvement in access to water supply, food security and fertility regulation, among others, in the quest to considerably improve childhood nutrition in Ethiopia.

SUBMITTER: Bitew FH 

PROVIDER: S-EPMC8883776 | biostudies-literature | 2022 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Machine learning algorithms for predicting undernutrition among under-five children in Ethiopia.

Bitew Fikrewold H FH   Sparks Corey S CS   Nyarko Samuel H SH  

Public health nutrition 20211008 2


<h4>Objective</h4>Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms.<h4>Design</h4>This study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were consid  ...[more]

Similar Datasets

| S-EPMC11623790 | biostudies-literature
| S-EPMC9443037 | biostudies-literature
| S-EPMC10449142 | biostudies-literature
| S-EPMC8542294 | biostudies-literature
| S-EPMC7373184 | biostudies-literature
| S-EPMC11304488 | biostudies-literature
| S-EPMC11575239 | biostudies-literature
| S-EPMC9320245 | biostudies-literature
| S-EPMC10230679 | biostudies-literature