Unknown

Dataset Information

0

Improved image classification explainability with high-accuracy heatmaps.


ABSTRACT: Deep learning models have become increasingly used for image-based classification. In critical applications such as medical imaging, it is important to convey the reasoning behind the models' decisions in human-understandable forms. In this work, we propose Pyramid Localization Network (PYLON), a deep learning model that delivers precise location explanation by increasing the resolution of heatmaps produced by class activation map (CAM). PYLON substantially improves the quality of CAM's heatmaps in both general image and medical image domains and excels at pinpointing the locations of small objects. Most importantly, PYLON does not require expert annotation of the object location but instead can be trained using only image-level label. This capability is especially important for domain where expert annotation is often unavailable or costly to obtain. We also demonstrate an effective transfer learning approach for applying PYLON on small datasets and summarize technical guidelines that would facilitate wider adoption of the technique.

SUBMITTER: Preechakul K 

PROVIDER: S-EPMC8889368 | biostudies-literature | 2022 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Improved image classification explainability with high-accuracy heatmaps.

Preechakul Konpat K   Sriswasdi Sira S   Kijsirikul Boonserm B   Chuangsuwanich Ekapol E  

iScience 20220215 3


Deep learning models have become increasingly used for image-based classification. In critical applications such as medical imaging, it is important to convey the reasoning behind the models' decisions in human-understandable forms. In this work, we propose Pyramid Localization Network (PYLON), a deep learning model that delivers precise location explanation by increasing the resolution of heatmaps produced by class activation map (CAM). PYLON substantially improves the quality of CAM's heatmaps  ...[more]

Similar Datasets

| S-EPMC10703013 | biostudies-literature
| S-EPMC8323718 | biostudies-literature
| S-EPMC8387968 | biostudies-literature
| S-EPMC5701090 | biostudies-literature
| S-EPMC6397213 | biostudies-literature
| S-EPMC8522832 | biostudies-literature
| S-EPMC10859268 | biostudies-literature
2022-11-03 | GSE209962 | GEO
| S-EPMC7663993 | biostudies-literature
| S-EPMC3711905 | biostudies-literature