Project description:Polymicrogyria (PMG) is a malformation of cortical development due to an abnormal organisation. It is a heterogeneous disorder associated with genetic and acquired events, namely 22q11.2 deletion syndrome also known as DiGeorge syndrome (DGS) /velocardiofacial syndrome (VCFS) among others. This association has been known since 1996 and more than 30 cases have been described. Neurological features include motor and cognitive impairment, epilepsy, microcephaly and spasticity. The authors present an 8-month old infant with minor dysmorphic features, microcephaly, global psychomotor retardation and epilepsy. Brain MRI revealed diffuse bilateral PMG. The 22q11.2 deletion was confirmed by fluorescent in situ hybridisation (FISH). The child had no other manifestation of DGS/VCFS. paediatricians, neuropaediatricians, development specialists and geneticists should be aware that in the presence of PMG, especially when bilateral, 22q11.2 deletion should be investigated, even in the absence of the typical features of DGS/VCFS. On the other hand, in children with 22q11.2 deletion, brain malformations should be ruled out.
Project description:Deletions and duplications at the 22q11.2 locus are associated with significant neurodevelopmental and psychiatric morbidity. Previous diffusion-weighted magnetic resonance imaging (MRI) studies in 22q11.2 deletion carriers (22q-del) found nonspecific white matter (WM) abnormalities, characterized by higher fractional anisotropy. Here, utilizing novel imaging and processing methods that allow separation of signal contribution from different tissue properties, we investigate whether higher anisotropy is driven by (1) extracellular changes, (2) selective degeneration of secondary fibers, or (3) volumetric differences. We further, for the first time, investigate WM microstructure in 22q11.2 duplication carriers (22q-dup). Multi-shell diffusion-weighted images were acquired from 26 22q-del, 19 22q-dup, and 18 healthy individuals (HC). Images were fitted with the free-water model to estimate anisotropy following extracellular free-water elimination and with the novel BedpostX model to estimate fractional volumes of primary and secondary fiber populations. Outcome measures were compared between groups, with and without correction for WM and cerebrospinal fluid (CSF) volumes. In 22q-del, anisotropy following free-water elimination remained significantly higher compared with controls. BedpostX did not identify selective secondary fiber degeneration. Higher anisotropy diminished when correcting for the higher CSF and lower WM volumes. In contrast, 22q-dup had lower anisotropy and greater extracellular space than HC, not influenced by macrostructural volumes. Our findings demonstrate opposing effects of reciprocal 22q11.2 copy-number variation on WM, which may arise from distinct pathologies. In 22q-del, microstructural abnormalities may be secondary to enlarged CSF space and more densely packed WM. In 22q-dup, we see evidence for demyelination similar to what is commonly observed in neuropsychiatric disorders.
Project description:BACKGROUND: Individuals affected with DiGeorge and Velocardiofacial syndromes present with both phenotypic diversity and variable expressivity. The most frequent clinical features include conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial dysmorphism. The etiology in most patients is a 3 Mb recurrent deletion in region 22q11.2. However, cases of infrequent deletions and duplications with different sizes and locations have also been reported, generally with a milder, slightly different phenotype for duplications but with no clear genotype-phenotype correlation to date. METHODS: We present a 7 month-old male patient with surgically corrected ASD and multiple VSDs, and dysmorphic facial features not clearly suggestive of 22q11.2 deletion syndrome, and a newborn male infant with cleft lip and palate and upslanting palpebral fissures. Karyotype, FISH, MLPA, microsatellite markers segregation studies and SNP genotyping by array-CGH were performed in both patients and parents. RESULTS: Karyotype and FISH with probe N25 were normal for both patients. MLPA analysis detected a partial de novo 1.1 Mb deletion in one patient and a novel partial familial 0.4 Mb duplication in the other. Both of these alterations were located at a distal position within the commonly deleted region in 22q11.2. These rearrangements were confirmed and accurately characterized by microsatellite marker segregation studies and SNP array genotyping. CONCLUSION: The phenotypic diversity found for deletions and duplications supports a lack of genotype-phenotype correlation in the vicinity of the LCRC-LCRD interval of the 22q11.2 chromosomal region, whereas the high presence of duplications in normal individuals supports their role as polymorphisms. We suggest that any hypothetical correlation between the clinical phenotype and the size and location of these alterations may be masked by other genetic and/or epigenetic modifying factors.
Project description:Velocardiofacial and DiGeorge syndromes, also known as 22q11.2 deletion syndrome (22q11DS), are congenital-anomaly disorders caused by a de novo hemizygous 22q11.2 deletion mediated by meiotic nonallelic homologous recombination events between low-copy repeats, also known as segmental duplications. Although previous studies exist, each was of small size, and it remains to be determined whether there are parent-of-origin biases for the de novo 22q11.2 deletion. To address this question, we genotyped a total of 389 DNA samples from 22q11DS-affected families. A total of 219 (56%) individuals with 22q11DS had maternal origin and 170 (44%) had paternal origin of the de novo deletion, which represents a statistically significant bias for maternal origin (p = 0.0151). Combined with many smaller, previous studies, 465 (57%) individuals had maternal origin and 345 (43%) had paternal origin, amounting to a ratio of 1.35 or a 35% increase in maternal compared to paternal origin (p = 0.000028). Among 1,892 probands with the de novo 22q11.2 deletion, the average maternal age at time of conception was 29.5, and this is similar to data for the general population in individual countries. Of interest, the female recombination rate in the 22q11.2 region was about 1.6-1.7 times greater than that for males, suggesting that for this region in the genome, enhanced meiotic recombination rates, as well as other as-of-yet undefined 22q11.2-specific features, could be responsible for the observed excess in maternal origin.
Project description:While 9p deletion and duplication syndromes have been studied for several years, small sample sizes and minimal high-resolution data have limited a comprehensive delineation of genotypic and phenotypic characteristics. In this study, we examined genetic data from 719 individuals in the worldwide 9p Network Cohort: a cohort seven to nine times larger than any previous study of 9p. Most breakpoints occur in bands 9p22 and 9p24, accounting for 35% and 38% of all breakpoints, respectively. Bands 9p11 and 9p12 have the fewest breakpoints, with each accounting for 0.6% of all breakpoints. The most common phenotype in 9p deletion and duplication syndromes is developmental delay, and we identified eight known neurodevelopmental disorder genes in 9p22 and 9p24. Since it has been previously reported that some individuals have a secondary structural variant related to the 9p variant, we examined our cohort for these variants and found 97 events. The top secondary variant involved 9q in 14 individuals (1.9%), including ring chromosomes and inversions. We identified a gender bias with significant enrichment for females (p = 0.0006) that may arise from a sex reversal in some individuals with 9p deletions. Genes on 9p were characterized regarding function, constraint metrics, and protein-protein interactions, resulting in a prioritized set of genes for further study. Finally, we achieved precision genomics in one child with a complex 9p structural variation using modern genomic technologies, demonstrating that long-read sequencing will be integral for some cases. Our study is the largest ever on 9p-related syndromes and provides key insights into genetic factors involved in these syndromes.
Project description:ObjectiveThis study aimed to establish a cell-free fetal DNA (cffDNA) assay using multiplex digital PCR (dPCR) for identifying fetuses at increased risk of 22q11.2 deletion/duplication syndrome.MethodsSix detection sites and their corresponding probes were designed for the 22q11.2 recurrent region. A dPCR assay for the noninvasive screening of 22q11.2 deletion/duplication syndrome was established. A total of 130 plasma samples from pregnant women (including 15 samples with fetal 22q11.2 deletion/duplication syndrome) were blindly tested for evaluating the sensitivity and specificity of the established assay.ResultsDNA with different sizes of 22q11.2 deletion/duplication was detected via dPCR, indicating that the designed probes and detection sites were reasonable and effective. In the retrospective clinical samples, 11 out of 15 samples of pregnant women with 22q11.2 deletion/duplication were detected during the cffDNA assay, and accurate regional localization was achieved. Among the 115 normal samples, 111 were confirmed to be normal. Receiver operating characteristic curves were used for assessing the cut-off values and AUC for these samples. The sensitivity, specificity, and positive as well as negative predictive values were 73.3%, 96.5%, 73.3%, and 96.5%, respectively.ConclusionThe cffDNA assay based on dPCR technology for the noninvasive detection of 22q11.2 recurrent copy number variants in fetuses detected most affected cases, including smaller but relatively common nested deletions, with a low false-positive rate. It is a potential, efficient and simple method for the noninvasive screening of 22q11.2 deletion/duplication syndrome.
Project description:22q11.2 deletion syndrome (22qDS) is a genetic syndrome associated with a chromosome 22q11.2 deletion and variable phenotypic expression that commonly includes schizophrenia. Approximately 1% of patients with schizophrenia have 22qDS. The schizophrenia in 22qDS appears broadly similar to that found in the general population with respect to core signs and symptoms, treatment response, neurocognitive profile, and MRI brain anomalies. However, individuals with a 22qDS form of schizophrenia typically have distinguishable physical features, have a lower IQ, and may differ in auxiliary clinical features. IQ, length of 22q11.2 deletions, and COMT functional allele do not appear to be major risk factors for schizophrenia in 22qDS. Ascertainment biases and small sample sizes are limitations of most studies. Larger studies over the lifespan and continuing education about this underrecognized condition are needed. 22qDS-schizophrenia is an important genetic subtype and a valuable model of neurodevelopmental mechanisms involved in the pathogenesis of schizophrenia.
Project description:IntroductionThe chromosome 22q11.2 deletion syndrome comprises phenotypically similar diseases characterized by abnormal development of the third and fourth branchial arches, resulting in variable combinations of congenital heart defects, dysmorphisms, hypocalcemia, palatal dysfunction, developmental or neuropsychiatric disorders, and impairment of the immune system due to thymic dysfunction. Other genetic syndromes, often called DiGeorge-like, share clinical and immunological features with 22q11.2 deletion syndrome. This syndrome has been rarely associated with malignancies, mainly hematological but also hepatic, renal, and cerebral. Rarely, malignancies in the head and neck region have been described, although no aggregate of data on the development of thyroid neoplasms in patients with this clinical phenotype has been conducted so far.Materials and methodsTo characterize this possible association, a multicenter survey was made. Thus, we present a case series of five pediatric patients with 22q11.2 deletion syndrome or DiGeorge-like syndrome who were occasionally found with confirmed or highly suspected neoplasms of the thyroid gland during their follow-up. In three cases, malignancies were histologically confirmed, but their outcome was good due to an early recognition of suspicious nodules and precocious surgery.ConclusionsThis study underlines for clinicians the higher risk of neoplasms in the head and neck district for patients affected by these syndromes. It also emphasizes the importance of a prolonged clinical and ultrasound follow-up for patients with this clinical and immunological phenotype.
Project description:The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+) or a duplication (Dup/+) of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice.
Project description:The 22q11.2 deletion syndrome (22q11.2DS) is a congenital malformation and neuropsychiatric disorder caused by meiotic chromosome rearrangements. One of the goals of this review is to summarize the current state of basic research studies of 22q11.2DS. It highlights efforts to understand the mechanisms responsible for the 22q11.2 deletion that occurs in meiosis. This mechanism involves the four sets of low copy repeats (LCR22) that are dispersed in the 22q11.2 region and the deletion is mediated by nonallelic homologous recombination events. This review also highlights selected genes mapping to the 22q11.2 region that may contribute to the typical clinical findings associated with the disorder and explain that mutations in genes on the remaining allele can uncover rare recessive conditions. Another important aspect of 22q11.2DS is the existence of phenotypic heterogeneity. While some patients are mildly affected, others have severe medical, cognitive, and/or psychiatric challenges. Variability may be due in part to the presence of genetic modifiers. This review discusses current genome-wide efforts to identify such modifiers that could shed light on molecular pathways required for normal human development, cognition or behavior.