Project description:Chimeric antigen receptor (CAR)-T-cell therapeutic efficacy is associated with long-term T-cell persistence and acquisition of memory. Memory-subset formation requires T-cell factor 1 (TCF-1), a master transcription factor for which few regulators have been identified. Here, we demonstrate using an immune-competent mouse model of B-cell acute lymphoblastic leukemia (ALL; B-ALL) that Regnase-1 deficiency promotes TCF-1 expression to enhance CAR-T-cell expansion and memory-like cell formation. This leads to improved CAR-T-mediated tumor clearance, sustained remissions, and protection against secondary tumor challenge. Phenotypic, transcriptional, and epigenetic profiling identified increased tumor-dependent programming of Regnase-1-deficient CAR-T cells into TCF-1+ precursor exhausted T cells (TPEX) characterized by upregulation of both memory and exhaustion markers. Regnase-1 directly targets Tcf7 messenger RNA (mRNA); its deficiency augments TCF-1 expression leading to the formation of TPEX that support long-term CAR-T-cell persistence and function. Regnase-1 deficiency also reduces exhaustion and enhances the activity of TCF-1- CAR-T cells. We further validate these findings in human CAR-T cells, where Regnase-1 deficiency mediates enhanced tumor clearance in a xenograft B-ALL model. This is associated with increased persistence and expansion of a TCF-1+ CAR-T-cell population. Our findings demonstrate the pivotal roles of TPEX, Regnase-1, and TCF-1 in mediating CAR-T-cell persistence and recall responses, and identify Regnase-1 as a modulator of human CAR-T-cell longevity and potency that may be manipulated for improved therapeutic efficacy.
Project description:transcriptional profiling was performed on WT and KO CAR T cells isolated 7 days after co-transfer into mice with or without tumors. Regnase-1 KO CAR T cells undergoing a tumor-dependent shift from an effector to memory-like phenotype
Project description:Gene expression profiles of OSU-CLL cells were tested after exposure to CC-122 (0.1 and 1 micromolar), Lenalidomide (1 micromolar), or DMSO, at 5 and 24 hours
Project description:There is a need for additional treatment options for patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) who do not benefit from available therapies. We examined combinations of the cereblon E3 ligase modulator (CELMoD) agent avadomide (CC-122), the selective, ATP-competitive mammalian target of rapamycin kinase inhibitor CC-223, and the potent, selective, covalent Bruton tyrosine kinase inhibitor CC-292 in patients with relapsed/refractory (R/R) DLBCL. In the multicenter, phase Ib CC-122-DLBCL-001 study (NCT02031419), the dose-escalation portion explored combinations of CC-122, CC-223, and CC-292 administered as doublets or triplets with rituximab in patients with chemorefractory DLBCL. Primary endpoints were safety, tolerability, and dose-limiting toxicities; additional endpoints included pharmacokinetics, pharmacodynamics, biomarkers, and preliminary efficacy. As of December 1, 2017, 106 patients were enrolled across four cohorts. The median age was 65 years (range 24-84 years), and patients had a median of 3 (range 1-10) prior to regimens. A total of 101 patients (95.3%) discontinued, most commonly due to disease progression (49.1%). The most common any-grade adverse events (AEs) across treatment arms were gastrointestinal and hematologic; the most common grade 3/4 AEs were hematologic. CC-122 was well tolerated, with no unexpected safety concerns. Preliminary efficacy was observed in three of four treatment arms. CC-122 plus rituximab was considered suitable for dose expansion, whereas CC-223 and CC-292 combinations were associated with enhanced toxicity and/or insufficient improvement in responses. CC-122 plus rituximab was well tolerated, with preliminary antitumor activity in patients with R/R DLBCL. This innovative study demonstrates the feasibility of assessing the tolerability and preliminary efficacy of novel combinations utilizing a multi-arm dose-finding design.
Project description:TCF-1 is a key transcription factor in progenitor exhausted CD8 T cells (Tex). Moreover, this Tex cell subset mediates responses to PD-1 checkpoint pathway blockade. However, the role of the transcription factor TCF-1 in early fate decisions and initial generation of Tex cells is unclear. Single-cell RNA sequencing (scRNA-seq) and lineage tracing identified a TCF-1+Ly108+PD-1+ CD8 T cell population that seeds development of mature Tex cells early during chronic infection. TCF-1 mediated the bifurcation between divergent fates, repressing development of terminal KLRG1Hi effectors while fostering KLRG1Lo Tex precursor cells, and PD-1 stabilized this TCF-1+ Tex precursor cell pool. TCF-1 mediated a T-bet-to-Eomes transcription factor transition in Tex precursors by promoting Eomes expression and drove c-Myb expression that controlled Bcl-2 and survival. These data define a role for TCF-1 in early-fate-bifurcation-driving Tex precursor cells and also identify PD-1 as a protector of this early TCF-1 subset.