Ratiometric Imaging of Mitochondrial Hydrogen Peroxide in Aβ42-Mediated Neurotoxicity.
Ontology highlight
ABSTRACT: Oxidative stress is important for the etiology and pathogenesis of Alzheimer's disease (AD). Research tools that can conveniently evaluate oxidative stress in AD models are expected to catalyze and accelerate research on AD. This study explored the use of genetically encoded fluorescent indicators (GEFIs) to detect mitochondrial oxidative stress in organotypic brain slices and AD mouse models. To enable ratiometric normalization and avoid tissue autofluorescence, we genetically fused a green fluorescent hydrogen peroxide (H2O2) indicator, HyPer7, with each of two selected, bright red fluorescent proteins (RFPs), mScarlet-I and tdTomato. The resultant indicators, namely, HyPerGRS and HyPerGRT, were tagged with mitochondrial targeting sequences and examined for localization and function in cultured HeLa cells and primary mouse neurons. We further utilized HyPerGRT, which is a genetic fusion of HyPer7 with tdTomato, to monitor mitochondrial H2O2 in response to the human β-amyloid 1-42 isoform (Aβ42) in cultured brain slices and an AD mouse model. Owing to the high sensitivity and low autofluorescence interference resulting from HyPerGRT, we successfully detected Aβ42-mediated mitochondrial H2O2 in these AD models. The results suggest that HyPerGRT is a valuable tool for studying mitochondrial oxidative stress in tissues and animals.
SUBMITTER: Li X
PROVIDER: S-EPMC8957525 | biostudies-literature | 2022 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA