Unknown

Dataset Information

0

Deep learning-based convolutional neural network for intramodality brain MRI synthesis.


ABSTRACT:

Purpose

The existence of multicontrast magnetic resonance (MR) images increases the level of clinical information available for the diagnosis and treatment of brain cancer patients. However, acquiring the complete set of multicontrast MR images is not always practically feasible. In this study, we developed a state-of-the-art deep learning convolutional neural network (CNN) for image-to-image translation across three standards MRI contrasts for the brain.

Methods

BRATS'2018 MRI dataset of 477 patients clinically diagnosed with glioma brain cancer was used in this study, with each patient having T1-weighted (T1), T2-weighted (T2), and FLAIR contrasts. It was randomly split into 64%, 16%, and 20% as training, validation, and test set, respectively. We developed a U-Net model to learn the nonlinear mapping of a source image contrast to a target image contrast across three MRI contrasts. The model was trained and validated with 2D paired MR images using a mean-squared error (MSE) cost function, Adam optimizer with 0.001 learning rate, and 120 epochs with a batch size of 32. The generated synthetic-MR images were evaluated against the ground-truth images by computing the MSE, mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM).

Results

The generated synthetic-MR images with our model were nearly indistinguishable from the real images on the testing dataset for all translations, except synthetic FLAIR images had slightly lower quality and exhibited loss of details. The range of average PSNR, MSE, MAE, and SSIM values over the six translations were 29.44-33.25 dB, 0.0005-0.0012, 0.0086-0.0149, and 0.932-0.946, respectively. Our results were as good as the best-reported results by other deep learning models on BRATS datasets.

Conclusions

Our U-Net model exhibited that it can accurately perform image-to-image translation across brain MRI contrasts. It could hold great promise for clinical use for improved clinical decision-making and better diagnosis of brain cancer patients due to the availability of multicontrast MRIs. This approach may be clinically relevant and setting a significant step to efficiently fill a gap of absent MR sequences without additional scanning.

SUBMITTER: Osman AFI 

PROVIDER: S-EPMC8992958 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Deep learning-based convolutional neural network for intramodality brain MRI synthesis.

Osman Alexander F I AFI   Tamam Nissren M NM  

Journal of applied clinical medical physics 20220119 4


<h4>Purpose</h4>The existence of multicontrast magnetic resonance (MR) images increases the level of clinical information available for the diagnosis and treatment of brain cancer patients. However, acquiring the complete set of multicontrast MR images is not always practically feasible. In this study, we developed a state-of-the-art deep learning convolutional neural network (CNN) for image-to-image translation across three standards MRI contrasts for the brain.<h4>Methods</h4>BRATS'2018 MRI da  ...[more]

Similar Datasets

| S-EPMC6186044 | biostudies-literature
| S-EPMC6095475 | biostudies-literature
| S-EPMC8061452 | biostudies-literature
| S-EPMC11605166 | biostudies-literature
| S-EPMC8216429 | biostudies-literature
2021-01-11 | GSE147113 | GEO
| S-EPMC9908753 | biostudies-literature
| S-EPMC10121505 | biostudies-literature
| S-EPMC9601165 | biostudies-literature
| S-EPMC7251621 | biostudies-literature