Unknown

Dataset Information

0

The basis of mink susceptibility to SARS-CoV-2 infection.


ABSTRACT: Of all known airborne diseases in the twenty-first century, coronavirus disease 19 (COVID-19) has the highest infection and death rate. Over the past few decades, animal origin viral diseases, notably those of bats-linked, have increased many folds in humans with cross-species transmissions noted and the ongoing COVID-19 pandemic has emphasized the importance of understanding the evolution of natural hosts in response to viral pathogens. Cross-species transmissions are possible due to the possession of the angiotensin-converting enzyme 2 (ACE2) receptor in animals. ACE2 recognition by SARS-CoV-2 is a critical determinant of the host range, interspecies transmission, and viral pathogenesis. Thus, the phenomenon of breaking the cross-species barrier is mainly associated with mutations in the receptor-binding domain (RBD) of the spike (S) protein that interacts with ACE2. In this review, we raise the issue of cross-species transmission based on sequence alignment of S protein. Based on previous reports and our observations, we can conclude that the occurrence of one of two mutations D614G or Y453F is sufficient for infection of minks by SARS-CoV-2 from humans. Unfortunately, D614G is observed in the world's most common line of virus B.1.1.7 and the latest SARS-CoV-2 variants B.1.617.1, B.1.617.2, and B.1.617.3 too.

SUBMITTER: Barua A 

PROVIDER: S-EPMC8993591 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9472616 | biostudies-literature
| S-EPMC8009592 | biostudies-literature
| S-EPMC8629378 | biostudies-literature
| S-EPMC8242445 | biostudies-literature
| S-EPMC9896948 | biostudies-literature
| S-EPMC9155874 | biostudies-literature
| S-SCDT-10_1038-S44318-024-00061-0 | biostudies-other
| 12454 | ecrin-mdr-crc
2013-07-31 | E-GEOD-47960 | biostudies-arrayexpress
2013-07-31 | E-GEOD-47961 | biostudies-arrayexpress