Project description:Background: The emergence of new COVID-19 variants of concern coupled with a global inequity in vaccine access and distribution has prompted many public health authorities to circumvent the vaccine shortages by altering vaccination protocols and prioritizing persons at high risk. Individuals with previous COVID-19 infection may not have been prioritized due to existing humoral immunity. Objective: We aimed to study the association between previous COVID-19 infection and antibody levels after COVID-19 vaccination. Methods: A serological analysis to measure SARS-CoV-2 immunoglobulin (Ig)G, IgA, and neutralizing antibodies was performed on individuals who received one or two doses of either BNT162b2 or ChAdOx1 vaccines in Kuwait. A Student t-test was performed and followed by generalized linear regression models adjusted for individual characteristics and comorbidities were fitted to compare the average levels of IgG and neutralizing antibodies between vaccinated individuals with and without previous COVID-19 infection. Results: A total of 1,025 individuals were recruited. The mean levels of IgG, IgA, and neutralizing antibodies were higher in vaccinated subjects with previous COVID-19 infections than in those without previous infection. Regression analysis showed a steeper slope of decline for IgG and neutralizing antibodies in vaccinated individuals without previous COVID-19 infection compared to those with previous COVID-19 infection. Conclusion: Previous COVID-19 infection appeared to elicit robust and sustained levels of SARS-CoV-2 antibodies in vaccinated individuals. Given the inconsistent supply of COVID-19 vaccines in many countries due to inequities in global distribution, our results suggest that even greater efforts should be made to vaccinate more people, especially individuals without previous COVID-19 infection.
Project description:BackgroundThe duration and effectiveness of immunity from infection with and vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relevant to pandemic policy interventions, including the timing of vaccine boosters.MethodsWe investigated the duration and effectiveness of immunity in a prospective cohort of asymptomatic health care workers in the United Kingdom who underwent routine polymerase-chain-reaction (PCR) testing. Vaccine effectiveness (≤10 months after the first dose of vaccine) and infection-acquired immunity were assessed by comparing the time to PCR-confirmed infection in vaccinated persons with that in unvaccinated persons, stratified according to previous infection status. We used a Cox regression model with adjustment for previous SARS-CoV-2 infection status, vaccine type and dosing interval, demographic characteristics, and workplace exposure to SARS-CoV-2.ResultsOf 35,768 participants, 27% (9488) had a previous SARS-CoV-2 infection. Vaccine coverage was high: 95% of the participants had received two doses (78% had received BNT162b2 vaccine [Pfizer-BioNTech] with a long interval between doses, 9% BNT162b2 vaccine with a short interval between doses, and 8% ChAdOx1 nCoV-19 vaccine [AstraZeneca]). Between December 7, 2020, and September 21, 2021, a total of 2747 primary infections and 210 reinfections were observed. Among previously uninfected participants who received long-interval BNT162b2 vaccine, adjusted vaccine effectiveness decreased from 85% (95% confidence interval [CI], 72 to 92) 14 to 73 days after the second dose to 51% (95% CI, 22 to 69) at a median of 201 days (interquartile range, 197 to 205) after the second dose; this effectiveness did not differ significantly between the long-interval and short-interval BNT162b2 vaccine recipients. At 14 to 73 days after the second dose, adjusted vaccine effectiveness among ChAdOx1 nCoV-19 vaccine recipients was 58% (95% CI, 23 to 77) - considerably lower than that among BNT162b2 vaccine recipients. Infection-acquired immunity waned after 1 year in unvaccinated participants but remained consistently higher than 90% in those who were subsequently vaccinated, even in persons infected more than 18 months previously.ConclusionsTwo doses of BNT162b2 vaccine were associated with high short-term protection against SARS-CoV-2 infection; this protection waned considerably after 6 months. Infection-acquired immunity boosted with vaccination remained high more than 1 year after infection. (Funded by the U.K. Health Security Agency and others; ISRCTN Registry number, ISRCTN11041050.).
Project description:The Bacillus Calmette-Guérin (BCG) is a well-known vaccine with almost a century of use, with the apparent capability to improve cytokine production and epigenetics changes that could develop a better response to pathogens. It has been postulated that BCG protection against SARS-CoV-2 has a potential role in the pandemic, through the presence of homologous amino acid sequences. To identify a possible link between BCG vaccination coverage and COVID-19 cases, we used official epidemic data and Ecuadorian Ministry of Health and Pan American Health Organization vaccination information. BCG information before 1979 was available only at a national level. Therefore, projections based on the last 20 years were performed, to compare by specific geographic units. We used a Mann-Kendall test to identify BCG coverage variations, and mapping was conducted with a free geographic information system (QGIS). Nine provinces where BCG vaccine coverage was lower than 74.25% show a significant statistical association (χ2 Pearson's = 4.800, df = 1, p = 0.028), with a higher prevalence of cases for people aged 50 to 64 years than in younger people aged 20 to 49 years. Despite the availability of BCG vaccination data and the mathematical models needed to compare these data with COVID-19 cases, our results show that, in geographic areas where BCG coverage was low, 50% presented a high prevalence of COVID-19 cases that were young; thus, low-coverage years were more affected.
Project description:BackgroundCOVID-19 booster vaccinations mitigate transmission and reduce the morbidity and mortality associated with infection. However, the optimal date for booster administration remains uncertain. Geographic variation in infection rates throughout the year makes it challenging to intuit the best yearly booster administration date to effectively prevent infection, and also challenging to provide best guidance on how to alter booster administration in response to a breakthrough infection.MethodsWe leveraged longitudinal antibody and reinfection probabilities with spatiotemporal projections of COVID-19 incidence to develop a geographically informed approach to optimizing the timing of booster vaccination. We assessed the delay in booster vaccination that is warranted following breakthrough infections whenever they occur during the year, enabling a personalized assessment of optimal timing that acknowledges and respects diversity of COVID-19 immune status, addressing a substantial barrier to uptake.ResultsYearly booster vaccination on any date is beneficial to prevention of infection. However, each location exhibits as much as a 3-4-fold range in degree of protection by date of uptake. Optimal COVID-19 booster vaccination dates are location-specific, typically in early autumn in the Northern Hemisphere. Infection late in the interval between boosts substantially alters the optimal boosting date.ConclusionsConsiderable benefit accrues from aptly timing COVID-19 booster vaccination campaigns, which can be tailored to specific locations. Individuals can acquire the greatest benefit from booster vaccination by timing it optimally, including delaying in cases of infection late in the interval between boosts. These results provide location-specific guidance for public health policy, healthcare provider recommendations, and individual decision-making.
Project description:Background and objectivesUnderstanding the real-world impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mitigation measures, particularly vaccination, in children and adolescents in congregate settings remains important. We evaluated protection against SARS-CoV-2 infection using school-based testing data.MethodsUsing data from Utah middle- and high-school students participating in school-wide antigen testing in January 2022 during omicron (BA.1) variant predominance, log binomial models were fit to estimate the protection of previous SARS-CoV-2 infection and coronavirus disease 2019 vaccination against SARS-CoV-2 infection.ResultsAmong 17 910 students, median age was 16 years (range: 12-19), 16.7% had documented previous SARS-CoV-2 infection; 55.6% received 2 vaccine doses with 211 median days since the second dose; and 8.6% of students aged 16 to 19 years received 3 vaccine doses with 21 median days since the third dose. Protection from previous infection alone was 35.9% (95% confidence interval [CI]: 12.9%-52.8%) and 23.8% (95% CI: 2.1%-40.7%) for students aged 12 to 15 and 16 to 19 years, respectively. Protection from 2-dose hybrid immunity (previous SARS-CoV-2 infection and vaccination) with <180 days since the second dose was 58.7% (95% CI: 33.2%-74.4%) for students aged 12 to 15 and 54.7% (95% CI: 31.0%-70.3%) for students aged 16 to 19 years. Protection was highest (70.0%, 95% CI: 42.3%-84.5%) among students with 3-dose hybrid immunity, although confidence intervals overlap with 2-dose vaccination.ConclusionsThe estimated protection against infection was strongest for those with hybrid immunity from previous infection and recent vaccination with a third dose.
Project description:We analyzed the risk-benefit of COVID-19 vaccine using a causal model to explain and weigh up possible risk factors of blood clots after vaccination. A self-controlled case series method was used to examine the association between blood clots and COVID-19 vaccination. To avoid bias due to the under-reported infection among non-hospitalized subjects, a case-control study was used to compare the risk of blood clots in infected subjects to control subjects who were hospitalized due to physical injury. We found increased risks of blood clots after vaccination (incidence rate ratio is 1.13, 95% CI: [1.03,1.24] after the first dose and 1.23, 95% CI: [1.13,1.34] after the second dose). Furthermore, vaccination attenuated the increased risk of blood clots associated with infection (odds ratio is 2.16, 95% CI: [1.93,2.42] in unvaccinated versus 1.46, 95% CI: [1.25,1.70] in vaccinated). After accounting for vaccine efficacy against infection and the protection against infection-associated blood clots, receiving the COVID-19 vaccines decreases the risk of blood clots, especially during high infection rate period.
Project description:Increasing evidence has been pointing towards the existence of a bi-directional interplay between mental health condition and immunity. Data collected during the COVID-19 outbreak suggest that depressive symptoms may impact the production of antibodies against SARS-CoV-2, while a previous infection could affect the immune response and cause neuropsychological disturbances. A prospective observational study was designed to investigate the association between mental health conditions and immune response over time. We analyzed the mental health at baseline and the antibodies before and after immunization with the COVID-19 mRNA vaccine in a cohort of healthcare professionals in southern Switzerland. One-hundred and six subjects were enrolled. Anxiety, distress and depression correlated to each other. There were no correlations between the mentioned variables and the vaccine induced IgG antibodies against the receptor binding domain (RBD) of the spike protein. For those who had a previous COVID-19 infection, the antibodies increased according to the grade of depression. For those who did not, the anti-RBD IgG levels remained similar when comparing presence or absence of depression symptoms. Our results show that previous SARS-CoV-2 natural infection in subjects with mental health conditions enhances the immune response to COVID-19 mRNA vaccination. The correlation between immune response to COVID-19 vaccination, a previous exposure to the virus, and symptoms of mood disorders, makes it necessary to explore the direction of the causality between immune response and depressive symptoms.
Project description:Studies demonstrating the waning of post-vaccination and post-infection immunity against covid-19 generally analyzed a limited range of vaccines or subsets of populations. Using Czech national health data from the beginning of the covid-19 pandemic till November 20, 2021 we estimated the risks of reinfection, breakthrough infection, hospitalization and death by a Cox regression adjusted for sex, age, vaccine type and vaccination status. Vaccine effectiveness against infection declined from 87% at 0-2 months after the second dose to 53% at 7-8 months for BNT162b2 vaccine, from 90% at 0-2 months to 65% at 7-8 months for mRNA-1273, and from 83% at 0-2 months to 55% at 5-6 months for the ChAdOx1-S. Effectiveness against hospitalization and deaths declined by about 15% and 10%, respectively, during the first 6-8 months. Boosters (third dose) returned the protection to the levels observed shortly after dose 2. In unvaccinated, previously infected individuals the protection against infection declined from 97% after 2 months to 72% at 18 months. Our results confirm the waning of vaccination-induced immunity against infection and a smaller decline in the protection against hospitalization and death. Boosting restores the original vaccine effectiveness. Post-infection immunity also decreases over time.