Ontology highlight
ABSTRACT: Background
The recent severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection cause high mortality and there is an emergency need to develop a specific drug to treat the novel coronavirus disease, COVID-19. However, some natural and synthetic products with action against SARS-CoV-2 have been reported in recent research, there is no specific drug available for treating COVID-19. In the present study, molecular interaction analysis was performed for 16 semisynthetic andrographolides (AGP) against 5 SARS-CoV-2 enzymes main protease (Mpro, PDB: 6LU7), papain-like protease (PLpro, PDB: 6WUU), spike glycoprotein (S, PDB: 6VXX), NSP15 endoribonuclease (NSP15, PDB: 6VWW), and RNA-dependent RNA polymerase (RdRp, PDB: 6M71). Moreover, the compounds pharmacokinetic and toxic profiles were also analyzed using computational tools.Results
The protein-ligand docking score (kcal/mol) revealed that all the tested AGP derivatives showed a better binding affinity towards all the tested enzymes than hydroxychloroquine (HCQ). Meanwhile, all the tested AGP derivatives showed a better binding score with RdRp and S than remdesivir (REM). Interestingly, compounds 12, 14, and 15 showed a better binding affinity towards the all the tested enzyme than AGP, REM, and HCQ. AGP-16 had shown - 8.7 kcal/mol binding/docking score for Mpro, AGP-15 showed - 8.6 kcal/mol for NSP15, and AGP-10, 13, and 15 exhibited - 8.7, - 8.9, and - 8.7 kcal/mol, respectively, for S.Conclusion
Overall results of the present study concluded that AGP derivatives 14 and 15 could be the best 'lead' candidate for the treatment against SARS-CoV-2 infection. However, molecular dynamic studies and pharmacological screenings are essential to developing AGP derivatives 14 and 15 as a drug against COVID-19.
SUBMITTER: Veerasamy R
PROVIDER: S-EPMC9008396 | biostudies-literature | 2022 Apr
REPOSITORIES: biostudies-literature
Veerasamy Ravichandran R Karunakaran Rohini R
Journal, genetic engineering & biotechnology 20220414 1
<h4>Background</h4>The recent severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection cause high mortality and there is an emergency need to develop a specific drug to treat the novel coronavirus disease, COVID-19. However, some natural and synthetic products with action against SARS-CoV-2 have been reported in recent research, there is no specific drug available for treating COVID-19. In the present study, molecular interaction analysis was performed for 16 semisynthetic androgra ...[more]