Project description:The past decade has been transformative for lung cancer patients, physicians, and scientists. The discovery of EGFR mutations that confer sensitivity to tyrosine kinase inhibitors in lung adenocarcinomas in 2004 heralded the beginning of the era of precision medicine for lung cancer. Indeed, it precipitated concerted efforts by many investigators to define molecular subgroups of lung cancer, characterize the genomic landscape of lung cancer subtypes, identify novel therapeutic targets, and define mechanisms of sensitivity and resistance to targeted therapies. The fruits of these efforts are visible every day now in lung cancer clinics: Patients receive molecular testing to determine whether their tumor harbors an actionable mutation, new and improved targeted therapies that can overcome resistance to first-generation drugs are in clinical trials, and drugs targeting the immune system are showing activity in patients. This extraordinary promise is tempered by the sobering fact that even the newest treatments for metastatic disease are rarely curative and are effective only in a small fraction of all patients. Ongoing and future efforts to find new vulnerabilities of lung cancers, unravel the complexity of drug resistance, increase the efficacy of immunotherapies, and perform biomarker-driven clinical trials are necessary to improve outcomes for patients with lung cancer.
Project description:Prostate cancer is the second most common male cancer affecting Western society. Despite substantial advances in the exploration of prostate cancer biomarkers and treatment strategies, men are over diagnosed with inert prostate cancer, while there is also a substantial mortality from the invasive disease. Precision medicine is the management of treatment profiles across different cancers predicting therapies for individual cancer patients. With strategies including individual genomic profiling and targeting specific cancer pathways, precision medicine for prostate cancer has the potential to impose changes in clinical practices. Some of the recent advances in prostate cancer precision medicine comprise targeting gene fusions, genome editing tools, non-coding RNA biomarkers, and the promise of liquid tumor profiling. In this review, we will discuss these recent scientific advances to scale up these approaches and endeavors to overcome clinical barriers for prostate cancer precision medicine.
Project description:Gastric cancer (GC) remains the third most common cause of cancer death worldwide, with limited therapeutic strategies available. With the advent of next-generation sequencing and new preclinical model technologies, our understanding of its pathogenesis and molecular alterations continues to be revolutionized. Recently, the genomic landscape of GC has been delineated. Molecular characterization and novel therapeutic targets of each molecular subtype have been identified. At the same time, patient-derived tumor xenografts and organoids now comprise effective tools for genetic evolution studies, biomarker identification, drug screening, and preclinical evaluation of personalized medicine strategies for GC patients. These advances are making it feasible to integrate clinical, genome-based and phenotype-based diagnostic and therapeutic methods and apply them to individual GC patients in the era of precision medicine.
Project description:The progression of prostate cancer (PCa) relies on the activation of the androgen receptor (AR) by androgens. Despite efforts to block this pathway through androgen deprivation therapy, resistance can occur through several mechanisms, including the abnormal activation of AR, resulting in castration-resistant PCa following the introduction of treatment. Mutations, amplifications, and splicing variants in AR-related genes have garnered attention in this regard. Furthermore, recent large-scale next-generation sequencing analysis has revealed the critical roles of AR and AR-related genes, as well as the DNA repair, PI3K, and cell cycle pathways, in the onset and progression of PCa. Moreover, research on epigenomics and microRNA has increasingly become popular; however, it has not translated into the development of effective therapeutic strategies. Additionally, treatments targeting homologous recombination repair mutations and the PI3K/Akt pathway have been developed and are increasingly accessible, and multiple clinical trials have investigated the efficacy of immune checkpoint inhibitors. In this comprehensive review, we outline the status of PCa research in genomics and briefly explore potential future developments in the field of epigenetic modifications and microRNAs.
Project description:Pancreatic malignancies carry a dismal prognosis globally, with pancreatic adenocarcinomas (PDAC) being particularly aggressive and stubborn. Unfortunately, several therapeutic strategies that show promise in other cancers have failed to make sizeable impact on pancreatic tumor outcomes. Responses to immunotherapies are especially rare in pancreatic cancer, and patients are in need of innovative approaches that can result in more durable responses. Current research in preclinical models and humans has suggested this resistance is due to a uniquely inflammatory and dysfunctional tumor microenvironment; these findings lay the groundwork for targeting these barriers and improving outcomes. Clinical analyses have also revealed unprecedented heterogeneity in tumor and stromal biology of PDAC, underscoring the need for more personalized approaches and combinatorial therapies. This review will highlight the current state of translational research focusing on PDAC immunity, summarize ongoing clinical efforts to tackle PDAC vulnerabilities, and underscore some unresolved challenges in implementing therapies more broadly. A better understanding of immune contexture and tumor heterogeneity in this disease will greatly accelerate drug discovery and implementation of precision medicine for PDAC.
Project description:Metabolic rewiring is considered as a primary feature of cancer. Malignant cells reprogram metabolism pathway in response to various intrinsic and extrinsic drawback to fuel cell survival and growth. Among the complex metabolic pathways, pyrimidine biosynthesis is conserved in all living organism and is necessary to maintain cellular fundamental function (i.e. DNA and RNA biosynthesis). A wealth of evidence has demonstrated that dysfunction of pyrimidine metabolism is closely related to cancer progression and numerous drugs targeting pyrimidine metabolism have been approved for multiple types of cancer. However, the non-negligible side effects and limited efficacy warrants a better strategy for negating pyrimidine metabolism in cancer. In recent years, increased studies have evidenced the interplay of oncogenic signaling and pyrimidine synthesis in tumorigenesis. Here, we review the recent conceptual advances on pyrimidine metabolism, especially dihydroorotate dehydrogenase (DHODH), in the framework of precision oncology medicine and prospect how this would guide the development of new drug precisely targeting the pyrimidine metabolism in cancer.
Project description:Gastric cancer (GC) is a leading cause of worldwide cancer-related death. Being a highly heterogeneous disease, the current treatment of GC has been suboptimal due to the lack of subtype-dependent therapies. Peritoneal dissemination (PD) is a common pattern of GC metastasis associated with poor prognosis. Therefore, it is urgently necessary to identify patients at high risk of PD. PD is found to be associated with Lauren diffuse type GC. Molecular profiling of GC, especially diffuse type GC, has been utilized to identify molecular alterations and has given rise to various molecular classifications, shedding light on the underlying mechanism of PD and enabling identification of patients at higher PD risk. In addition, a series of diagnositc and prognostic biomarkers of PD from serum, peritoneal lavages and primary GCs have been reported. This comprehensive review summarizes findings on the multi-omic characteristics of diffuse type GC, the clinical significance of updating molecular classifications of GC in association with PD risk and research advances in PD-associated biomarkers.
Project description:Precision radiotherapy, which accurately delivers the dose on a tumor and confers little or no irradiation to the surrounding normal tissue and organs, results in maximum tumor control and decreases the toxicity to the utmost extent. Proton beam therapy (PBT) provides superior dose distributions and has a dosimetric advantage over photon beam therapy. Initially, the clinical practice and study of proton beam therapy focused on ocular tumor, skull base, paraspinal tumors (chondrosarcoma and chordoma), and unresectable sarcomas, which responded poorly when treated with photon radiotherapy. Then, it is widely regarded as an ideal mode for reirradiation and pediatrics due to reducing unwanted side effects by lessening the dose to normal tissue. During the past decade, the application of PBT has been rapidly increasing worldwide and gradually expanding for the treatment of various malignancies. However, to date, the role of PBT in clinical settings is still controversial, and there are considerable challenges in its application. We systematically review the latest advances of PBT and the challenges for patient treatment in the era of precision medicine.
Project description:Migraine is a common neurovascular disorder in the neurologic clinics whose mechanisms have been explored for several years. The aura has been considered to be attributed to cortical spreading depression (CSD) and dysfunction of the trigeminovascular system is the key factor that has been considered in the pathogenesis of migraine pain. Moreover, three genes (CACNA1A, ATP1A2, and SCN1A) have come from studies performed in individuals with familial hemiplegic migraine (FHM), a monogenic form of migraine with aura. Therapies targeting on the neuropeptids and genes may be helpful in the precision medicine of migraineurs. 5-hydroxytryptamine (5-HT) receptor agonists and calcitonin gene-related peptide (CGRP) receptor antagonists have demonstrated efficacy in the acute specific treatment of migraine attacks. Therefore, ongoing and future efforts to find new vulnerabilities of migraine, unravel the complexity of drug therapy, and perform biomarker-driven clinical trials are necessary to improve outcomes for patients with migraine.