C/EBPα Regulates PxTreh1 and PxTreh2 Trehalase-Related Bt Resistance in Plutella xylostella (L.).
Ontology highlight
ABSTRACT: Trehalase regulates energy metabolism in insects by converting trehalose into two glucose molecules. High amounts of trehalase are critical for insect flight and larval stress resistance. However, whether trehalase participates in the development of pesticide resistance remains unclear. In this study, we explored this phenomenon and the mechanism that underlies the regulation of Trehalase transcription. We found that overexpression of PxTreh1 and PxTreh2 induced Bacillus thuringiensis (Bt) resistance in Plutella xylostella. The promoter sequences of PxTreh1 and PxTreh2 were also cloned and identified. The dual-luciferase reporter system and RNA interference technology revealed that the expression of PxTreh1 and PxTreh2 genes is possibly regulated by the CCAAT enhancer-binding protein (C/EBPα). A yeast one-hybrid experiment confirmed the interaction between C/EBPα and the PxTreh2 promoter. The findings of this study suggest that C/EBPα mediates the adaptability of P. xylostella to adverse environmental stressors by regulating the expression of trehalase.
Project description:The diamondback moth, Plutella xylostella, is a lepidopteran insect that mainly harms cruciferous vegetables, with strong resistance to a variety of agrochemicals, including Bacillus thuringiensis (Bt) toxins. This study intended to screen genes associated with Bt resistance in P. xylostella by comparing the midgut transcriptome of Cry1Ac-susceptible and -resistant strains together with two toxin-treated strains 24 h before sampling. A total of 12 samples were analyzed by BGISEQ-500, and each sample obtained an average of 6.35 Gb data. Additionally, 3284 differentially expressed genes (DEGs) were identified in susceptible and resistant strains. Among them, five DEGs for cadherin, 14 for aminopeptidase, zero for alkaline phosphatase, 14 for ATP binding cassette transport, and five heat shock proteins were potentially involved in resistance to Cry1Ac in P. xylostella. Furthermore, DEGs associated with "binding", "catalytic activity", "cellular process", "metabolic process", and "cellular anatomical entity" were more likely to be responsible for resistance to Bt toxin. Thus, together with other omics data, our results will offer prospective genes for the development of Bt resistance, thereby providing a brand new reference for revealing the resistance mechanism to Bt of P. xylostella.
Project description:Exopolysaccharides (EPSs) are carbohydrate polymers that are synthesized and secreted into the extracellular during the growth of microorganisms. Bacillus thuringiensis (Bt) is a type of entomopathogenic bacterium, that produces various insecticidal proteins and EPSs. In our previous study, the EPSs produced by Bt strains were first found to enhance the toxicity of insecticidal crystal proteins against Plutella xylostella. However, the response of the intestinal bacterial communities of P. xylostella under the action of EPSs is still unelucidated. In this study, 16S rRNA amplicon sequencing was used to characterize the intestinal bacterial communities in P. xylostella treated with EPSs alone, Cry1Ac protoxin alone, and both the Cry1Ac protoxin and EPSs. Compared with the control group, alpha diversity indices, the Chao1 and ACE indices were significantly altered after treatment with EPSs alone, and no significant difference was observed between the groups treated with Cry1Ac protoxin alone and Cry1Ac protoxin + EPSs. However, compared with the gut bacterial community feeding on Cry1Ac protoxin alone, the relative abundance of 31 genera was significantly changed in the group treated with Cry1Ac protoxin and EPSs. The intestinal bacteria, through the oral of Cry1Ac protoxin and EPSs, significantly enhanced the toxicity of the Cry1Ac protoxin towards the axenic P. xylostella. In addition, the relative abundance of the 16S rRNA gene in the chloroplasts of Brassica campestris decreased after adding EPSs. Taken together, these results show the vital contribution of the gut microbiota to the Bt strain-killing activity, providing new insights into the mechanism of the synergistic insecticidal activity of Bt proteins and EPSs.
Project description:Fitness costs associated with resistance to insecticides have been well documented, usually at normal temperature conditions, in many insect species. In this study, using chlorpyrifos-resistant homozygote (RR) and chlorpyrifos-susceptible homozygote (SS) of resistance ace1 allele of Plutella xylostella (DBM), we confirmed firstly that high temperature experience in pupal stage influenced phenotype of wing venation in insecticide-resistant and insecticide-susceptible Plutella xylostella, and SS DBM showed significantly higher thermal tolerance and lower damages of wing veins under heat stress than RR DBM. As compared to SS DBM, RR DBM displayed significantly lower AChE sensitivity to chlorpyrifos, higher basal GSTs activity and P450 production at 25°C, but higher inhibitions on the enzyme activities and P450 production as well as reduced resistance to chlorpyrifos under heat stress. Furthermore, RR DBM displayed significantly higher basal expressions of hsp69s, hsp72s, hsp20,hsp90,Apaf-1, and caspase-7 at 25°C, but lower induced expressions of hsps and higher induced expressions of Apaf-1,caspase-9, and caspase-7 under heat stress. These results suggest that fitness costs of chlorpyrifos resistance in DBM may partly attribute to excess consumption of energy caused by over production of detoxification enzymes and hsps when the proteins are less demanded at conducive environments but reduced expressions when they are highly demanded by the insects to combat environmental stresses, or to excess expressions of apoptotic genes under heat stress, which results in higher apoptosis. The evolutionary and ecological implications of these findings at global warming are discussed.
Project description:We used our newly ultra deep sequence data and bioinformatics to re-annotate P. xylostella genome for high confidence miRNAs with the correct 5p and 3p arm features. Furthermore, the whole genome was screened to identify potential miRNA binding sites using three target-predicting algorithms. Totally, 203 mature miRNAs were annotated, including 33 novel miRNAs.
Project description:BackgroundThe diamondback moth Plutella xyllostella has developed a high level of resistance to the latest insecticide chlorantraniliprole. A better understanding of P. xylostella's resistance mechanism to chlorantraniliprole is needed to develop effective approaches for insecticide resistance management.Principal findingsTo provide a comprehensive insight into the resistance mechanisms of P. xylostella to chlorantraniliprole, transcriptome assembly and tag-based digital gene expression (DGE) system were performed using Illumina HiSeq™ 2000. The transcriptome analysis of the susceptible strain (SS) provided 45,231 unigenes (with the size ranging from 200 bp to 13,799 bp), which would be efficient for analyzing the differences in different chlorantraniliprole-resistant P. xylostella stains. DGE analysis indicated that a total of 1215 genes (189 up-regulated and 1026 down-regulated) were gradient differentially expressed among the susceptible strain (SS) and different chlorantraniliprole-resistant P. xylostella strains, including low-level resistance (GXA), moderate resistance (LZA) and high resistance strains (HZA). A detailed analysis of gradient differentially expressed genes elucidated the existence of a phase-dependent divergence of biological investment at the molecular level. The genes related to insecticide resistance, such as P450, GST, the ryanodine receptor, and connectin, had different expression profiles in the different chlorantraniliprole-resistant DGE libraries, suggesting that the genes related to insecticide resistance are involved in P. xylostella resistance development against chlorantraniliprole. To confirm the results from the DGE, the expressional profiles of 4 genes related to insecticide resistance were further validated by qRT-PCR analysis.ConclusionsThe obtained transcriptome information provides large gene resources available for further studying the resistance development of P. xylostella to pesticides. The DGE data provide comprehensive insights into the gene expression profiles of the different chlorantraniliprole-resistant stains. These genes are specifically related to insecticide resistance, with different expressional profiles facilitating the study of the role of each gene in chlorantraniliprole resistance development.
Project description:The development of insecticide resistance in insect pests is a worldwide concern and elucidating the underlying mechanisms is critical for effective crop protection. Recent studies have indicated potential links between insect gut microbiota and insecticide resistance and these may apply to the diamondback moth, Plutella xylostella (L.), a globally and economically important pest of cruciferous crops. We isolated Enterococcus sp. (Firmicutes), Enterobacter sp. (Proteobacteria), and Serratia sp. (Proteobacteria) from the guts of P. xylostella and analyzed the effects on, and underlying mechanisms of insecticide resistance. Enterococcus sp. enhanced resistance to the widely used insecticide, chlorpyrifos, in P. xylostella, while in contrast, Serratia sp. decreased resistance and Enterobacter sp. and all strains of heat-killed bacteria had no effect. Importantly, the direct degradation of chlorpyrifos in vitro was consistent among the three strains of bacteria. We found that Enterococcus sp., vitamin C, and acetylsalicylic acid enhanced insecticide resistance in P. xylostella and had similar effects on expression of P. xylostella antimicrobial peptides. Expression of cecropin was down-regulated by the two compounds, while gloverin was up-regulated. Bacteria that were not associated with insecticide resistance induced contrasting gene expression profiles to Enterococcus sp. and the compounds. Our studies confirmed that gut bacteria play an important role in P. xylostella insecticide resistance, but the main mechanism is not direct detoxification of insecticides by gut bacteria. We also suggest that the influence of gut bacteria on insecticide resistance may depend on effects on the immune system. Our work advances understanding of the evolution of insecticide resistance in this key pest and highlights directions for research into insecticide resistance in other insect pest species.
Project description:Purpose: To investigate the molecular mechanism underlying the function of DMNT function on P. xylostella larvar, we performed a whole genome transcriptome sequencing (RNA-seq) analysis