Project description:SARS-CoV-2 reinfections increased substantially after Omicron variants emerged. Large-scale community-based comparisons across multiple Omicron waves of reinfection characteristics, risk factors, and protection afforded by previous infection and vaccination, are limited. Here we studied ~45,000 reinfections from the UK's national COVID-19 Infection Survey and quantified the risk of reinfection in multiple waves, including those driven by BA.1, BA.2, BA.4/5, and BQ.1/CH.1.1/XBB.1.5 variants. Reinfections were associated with lower viral load and lower percentages of self-reporting symptoms compared with first infections. Across multiple Omicron waves, estimated protection against reinfection was significantly higher in those previously infected with more recent than earlier variants, even at the same time from previous infection. Estimated protection against Omicron reinfections decreased over time from the most recent infection if this was the previous or penultimate variant (generally within the preceding year). Those 14-180 days after receiving their most recent vaccination had a lower risk of reinfection than those >180 days from their most recent vaccination. Reinfection risk was independently higher in those aged 30-45 years, and with either low or high viral load in their most recent previous infection. Overall, the risk of Omicron reinfection is high, but with lower severity than first infections; both viral evolution and waning immunity are independently associated with reinfection.
Project description:We generated LNP-mRNA encoding B.1.1.529 SARS-CoV-2 spike, and intramuscularly administered it in a human IgG and IgK knock-in mouse. Single cell VDJ-seq unveiled the sequences of human monoclonal antibodies targeting the B.1.1.529 SARS-CoV-2 spike protein.
Project description:Since the beginning of the SARS-CoV-2 pandemic, studies on the variants and sublineages stand out, mainly in the cases of reinfection in a short period. In this study, we describe a case of infection by BA.1.1 sublineage in an individual from Southern Brazil. The same patient acquired reinfection with sublineage BA.2 within 16 days after the first detection. The viral extraction and RT-qPCR were performed on the samples LMM72045 (collected in May 2022) and LMM72044 (collected in June 2022). After the confirmation of SARS-CoV-2 infection, we conducted the sequencing and viral genome analysis. This case of reinfection affected a 52-year-old male patient, without comorbidities, with three doses of vaccines against COVID-19, showing symptoms on May 19. These symptoms lasted for approximately six days. The patient returned to work activities on May 30. However, on June 4, the patient felt a new round of clinical signs that lasted for approximately seven days. Analysis of the viral genomes recovered from patients' clinical samples revealed that the two COVID-19 episodes were related to two divergent VOC Omicron sublineages, namely, BA.1.1 for the first round of symptoms and BA.2 for the second infection. Based on our findings, we can say that the present case of reinfection is the shortest described so far.