Ontology highlight
ABSTRACT: Background
International consensus on best practices for calculating and reporting vestibular function is lacking. Quantitative vestibulo-ocular reflex (VOR) gain using a video head impulse test (HIT) device can be calculated by various methods.Objective
To compare different gain calculation methods and to analyze interactions between artifacts and calculation methods.Methods
We analyzed 1300 horizontal HIT traces from 26 patients with acute vestibular syndrome and calculated the ratio between eye and head velocity at specific time points (40 ms, 60 ms) after HIT onset ('velocity gain'), ratio of velocity slopes ('regression gain'), and ratio of area under the curves after de-saccading ('position gain').Results
There was no mean difference between gain at 60 ms and position gain, both showing a significant correlation (r2 = 0.77, p < 0.001) for artifact-free recordings. All artifacts reduced high, normal-range gains modestly (range -0.06 to -0.11). The impact on abnormal, low gains was variable (depending on the artifact type) compared to artifact-free recordings.Conclusions
There is no clear superiority of a single gain calculation method for video HIT testing. Artifacts cause small but significant reductions of measured VOR gains in HITs with higher, normal-range gains, regardless of calculation method. Artifacts in abnormal HITs with low gain increased measurement noise. A larger number of HITs should be performed to confirm abnormal results, regardless of calculation method.
SUBMITTER: Zamaro E
PROVIDER: S-EPMC9037838 | biostudies-literature |
REPOSITORIES: biostudies-literature