Project description:BackgroundCells of the innate immune system including monocytes and macrophages are the first line of defence against infections and are critical regulators of the inflammatory response. These cells express toll-like receptors (TLRs), innate immune receptors which govern tailored inflammatory gene expression patterns. Monocytes, which produce pro-inflammatory mediators, are readily recruited to the central nervous system (CNS) in neurodegenerative diseases.MethodsThis study explored the expression of receptors (CD11b, TLR2 and TLR4) on circulating monocyte-derived macrophages (MDMs) and peripheral blood mononuclear cells (PBMCs) isolated from healthy elderly adults who we classified as either IQ memory-consistent (high-performing, HP) or IQ memory-discrepant (low-performing, LP).ResultsThe expression of CD11b, TLR4 and TLR2 was increased in MDMs from the LP group when compared to HP cohort. MDMs from both groups responded robustly to treatment with the TLR4 activator, lipopolysaccharide (LPS), in terms of cytokine production. Significantly, MDMs from the LP group displayed hypersensitivity to LPS exposure.InterpretationOverall these findings define differential receptor expression and cytokine profiles that occur in MDMs derived from a cohort of IQ memory-discrepant individuals. These changes are indicative of inflammation and may be involved in the prodromal processes leading to the development of neurodegenerative disease.
Project description:In atherosclerotic arteries, blood monocytes differentiate to macrophages in the presence of growth factors, such as macrophage colony-stimulation factor (M-CSF), and chemokines, such as platelet factor 4 (CXCL4). To compare the gene expression signature of CXCL4-induced macrophages with M-CSF-induced macrophages or macrophages polarized with IFN-gamma/LPS (M1) or IL-4 (M2), we cultured primary human peripheral blood monocytes for 6 d. mRNA expression was measured by Affymetrix gene chips, and differences were analyzed by local pooled error test, profile of complex functionality, and gene set enrichment analysis. Three hundred seventy-five genes were differentially expressed between M-CSF- and CXCL4-induced macrophages; 206 of them overexpressed in CXCL4 macrophages coding for genes implicated in the inflammatory/immune response, Ag processing and presentation, and lipid metabolism. CXCL4-induced macrophages overexpressed some M1 and M2 genes and the corresponding cytokines at the protein level; however, their transcriptome clustered with neither M1 nor M2 transcriptomes. They almost completely lost the ability to phagocytose zymosan beads. Genes linked to atherosclerosis were not consistently upregulated or downregulated. Scavenger receptors showed lower and cholesterol efflux transporters showed higher expression in CXCL4- than M-CSF-induced macrophages, resulting in lower low-density lipoprotein content. We conclude that CXCL4 induces a unique macrophage transcriptome distinct from known macrophage types, defining a new macrophage differentiation that we propose to call M4.
Project description:Alveolar macrophages (AMs) are the predominant innate immune cell in the distal respiratory tract. During inflammatory responses, AMs may be supplemented by blood monocytes, which differentiate into monocyte-derived macrophages (MDMs). Macrophages play important roles in a variety of common equine lower airway diseases, including severe equine asthma (SEA). In an experimental model, an inhaled mixture of Aspergillus fumigatus spores, lipopolysaccharide, and silica microspheres (FLS), induced SEA exacerbation in susceptible horses. However, whether equine AMs and MDMs have differing immunophenotypes and cytokine responses to FLS stimulation is unknown. To address these questions, alveolar macrophages/monocytes (AMMs) were isolated from bronchoalveolar lavage fluid and MDMs derived from blood of six healthy horses. Separately, AMMs and MDMs were cultured with and without FLS for six hours after which cell surface marker expression and cytokine production were analyzed by flow cytometry and a bead-based multiplex assay, respectively. Results showed that regardless of exposure conditions, AMMs had significantly higher surface expression of CD163 and CD206 than MDMs. Incubation with FLS induced secretion of IL-1β, IL-8, TNF-α and IFN-γ in AMMs, and IL-8, IL-10 and TNF-α in MDMs. These results suggest that AMMs have a greater proinflammatory response to in vitro FLS stimulation than MDMs, inferring differing roles in equine lung inflammation. Variability in recruitment and function of monocyte-macrophage populations warrant more detailed in vivo investigation in both homeostatic and diseased states.
Project description:Macrophages are central mediators of the innate immune system that can be differentiated from monocytes upon exposure to cytokines. While increased cyclic adenosine monophosphate (cAMP) levels are known to inhibit many lipopolysaccharide-elicited macrophage inflammatory responses, the effects of elevated cAMP on monocyte/macrophage differentiation are not as well understood. We show here that during differentiation, cAMP agonists can cause a large increase in the mRNA and protein levels of several of the pro-inflammatory CXCL and CCL chemokines. The cAMP mediator-exchange protein activated by cAMP (Epac) contributes substantially to the increase in these chemokines. These chemokines are known to play an important role in the regulation of immune responses, particularly regarding the pathogenesis of asthma and chronic obstructive pulmonary disorder. We also found that a selective cAMP-degrading phosphodiesterase (PDE) 4 inhibitor can potentiate the chemokine expression elicited by low-dose forskolin or Prostaglandin E2 (PGE(2)). These data suggest that chemokine receptor antagonists administered in conjunction with a PDE4 inhibitor may improve both the efficacy and safety of PDE4-inhibitor therapy for chronic inflammatory disorders.
Project description:Inflammatory monocytes are key mediators of acute and chronic inflammation; yet, their functional diversity remains obscure. Single-cell transcriptome analyses of human inflammatory monocytes from COVID-19 and rheumatoid arthritis patients revealed a subset of cells positive for CD127, an IL-7 receptor subunit, and such positivity rendered otherwise inert monocytes responsive to IL-7. Active IL-7 signaling engaged epigenetically coupled, STAT5-coordinated transcriptional programs to restrain inflammatory gene expression, resulting in inverse correlation between CD127 expression and inflammatory phenotypes in a seemingly homogeneous monocyte population. In COVID-19 and rheumatoid arthritis, CD127 marked a subset of monocytes/macrophages that retained hypoinflammatory phenotypes within the highly inflammatory tissue environments. Furthermore, generation of an integrated expression atlas revealed unified features of human inflammatory monocytes across different diseases and different tissues, exemplified by those of the CD127high subset. Overall, we phenotypically and molecularly characterized CD127-imprinted functional heterogeneity of human inflammatory monocytes with direct relevance for inflammatory diseases.
Project description:The levels of proinflammatory cytokine or chemokine in blood and cerebrospinal fluid are thought to be one of predictors for clinical severity of enterovirus 71 (EV71) infection, yet the cellular sources or signalling mechanism remain undefined. Here, we focused on the response of human primary monocyte-derived macrophages (MDMs) to EV71 virus and its possible mechanisms.Human primary MDMs were infected by EV71 virus in vitro. Infectivity and viral replication were assayed, and cytokine responses were determined by Cytometric Bead Array(CBA) analysis. The relative changes of Toll-like receptors, retinoic acid-inducible gene I (RIG-I) and melamoma differentiation associated gene 5 (MDA5) mRNA expression were detected by real-time RT-PCR.Effective infection and viral replication were detected in EV71-infected MDMs. The titters of progeny virus released from EV71-infected MDMs gradually increased from 6-h to 48-h point of infection (POI.). Proinflammatory cytokines: IL-1, IL-6, TNF-? but not IFN-? and ? were induced in MDMs by EV71. EV71 infection significantly increased the release of IL-8, IP-10 and RANTES at 12-h or 24-h POI. Upregulation of TLR2, TLR7 and TLR8 mRNA expression rather than TLR3, TLR4, TLR6, TLR9, TLR10, RIG-I, MDA5 were found at different time points in EV71-infected MDMs.Our findings suggested that macrophages are not only the important target cells but also the effectors during EV71 infection, and they may play an important role in the pathogenesis of EV71 infection. And the proinflammatory cytokine and chemokine responses in EV71-infected MDMs may be mediated by the activation of differential pattern of TLRs.
Project description:BackgroundA hallmark of atherosclerosis is its complex pathogenesis, which is dependent on altered cholesterol metabolism and inflammation. Both arms of pathogenesis involve myeloid cells. Monocytes migrating into the arterial walls interact with modified low-density lipoprotein (LDL) particles, accumulate cholesterol and convert into foam cells, which promote plaque formation and also contribute to inflammation by producing proinflammatory cytokines. A number of studies characterized transcriptomics of macrophages following interaction with modified LDL, and revealed alteration of the expression of genes responsible for inflammatory response and cholesterol metabolism. However, it is still unclear how these two processes are related to each other to contribute to atherosclerotic lesion formation.MethodsWe attempted to identify the main mater regulator genes in macrophages treated with atherogenic modified LDL using a bioinformatics approach.ResultsWe found that most of the identified genes were involved in inflammation, and none of them was implicated in cholesterol metabolism. Among the key identified genes were interleukin (IL)-7, IL-7 receptor, IL- 15 and CXCL8.ConclusionOur results indicate that activation of the inflammatory pathway is the primary response of the immune cells to modified LDL, while the lipid metabolism genes may be a secondary response triggered by inflammatory signalling.
Project description:The importance of Chromatin Immunoprecipitation (ChIP) technology has grown exponentially along with an increased interest in epigenetic regulation. The correlation of transcription factors with histone marks is now well established as the center of epigenetic studies; therefore, precise knowledge about histone marks is critical to unravel their molecular function and to understand their role in biological systems. This knowledge constantly accumulates and is provided openly in the expanding hubs of information such as the USCS Genome Browser. Nevertheless, as we gain more knowledge, we realize that the DNA-protein interactions are not driven by a "one size fits all" rule. Also, the diversity of interactions between DNA, histones, and transcriptional regulators is much bigger than previously considered. Besides a detailed protocol of sample preparation for the ChIP assay from primary human monocyte-derived macrophages (MDM) [an acceptable in vitro model for primary, human macrophage cells], we show that differences between various types of cells exist. Furthermore, we can postulate that such variations exist between transformed macrophage-like cell lines and primary macrophages obtained from healthy volunteers. We found that the most efficient fixation time for MDM is 10min. Finally, to perform multiple analytical assays, we showed that even with thorough methodology, the yield of material obtained from primary cells is the major challenge.
Project description:Historically, the brain has been considered an immune-privileged organ separated from the peripheral immune system by the blood-brain barrier. However, immune responses do occur in the brain in neurological conditions in which the integrity of the blood-brain barrier is compromised, exposing the brain to peripheral antigens and endogenous danger signals. While most of the associated pathological processes occur in the central nervous system, it is now clear that peripheral immune cells, especially mononuclear phagocytes, that infiltrate into the injury site play a key role in modulating the progression of primary brain injury development. As inflammation is a necessary and critical component for the subsequent injury resolution process, understanding the contribution of mononuclear phagocytes on the regulation of inflammatory responses may provide novel approaches for potential therapies. Furthermore, predisposed comorbid conditions at the time of stroke cause the alteration of stroke-induced immune and inflammatory responses and subsequently influence stroke outcome. In this review, we summarize a role for microglia and monocytes/macrophages in acute ischemic stroke in the context of normal and metabolically compromised conditions.