Unknown

Dataset Information

0

A credit scoring model based on the Myers-Briggs type indicator in online peer-to-peer lending.


ABSTRACT: Although psychometric features have been considered for alternative credit scoring, they have not yet been applied to peer-to-peer (P2P) lending because such information is not available on platforms. This study proposed an alternative credit scoring model for P2P lending by extracting typical personality types inferred from the borrowers' job category. We projected a virtual space of borrowers by using the affinity matrix based on the Myers-Briggs type indicator (MBTI) that fits each job category. Applying the distance in this space to Lending Club data, we used locally weighted logistic regression to vary the coefficients of the variables, which affect loan repayments, with each MBTI type for predicting the default probability. We found that each MBTI type's credit scoring model has different significant variables. This study provides insights into breakthroughs in developing alternative credit scoring for P2P lending.

Supplementary information

The online version contains supplementary material available at 10.1186/s40854-022-00347-4.

SUBMITTER: Woo H 

PROVIDER: S-EPMC9060850 | biostudies-literature | 2022

REPOSITORIES: biostudies-literature

altmetric image

Publications

A credit scoring model based on the Myers-Briggs type indicator in online peer-to-peer lending.

Woo Hyunwoo H   Sohn So Young SY  

Financial innovation 20220503 1


Although psychometric features have been considered for alternative credit scoring, they have not yet been applied to peer-to-peer (P2P) lending because such information is not available on platforms. This study proposed an alternative credit scoring model for P2P lending by extracting typical personality types inferred from the borrowers' job category. We projected a virtual space of borrowers by using the affinity matrix based on the Myers-Briggs type indicator (MBTI) that fits each job catego  ...[more]

Similar Datasets

| S-EPMC8234987 | biostudies-literature
| S-EPMC8189024 | biostudies-literature
| S-EPMC8943354 | biostudies-literature
| S-EPMC5873935 | biostudies-literature
| S-EPMC8649212 | biostudies-literature
| S-EPMC9041715 | biostudies-literature
| S-EPMC5978499 | biostudies-literature
| S-EPMC6375980 | biostudies-literature
| S-EPMC8577757 | biostudies-literature
| S-EPMC8210520 | biostudies-literature