Unknown

Dataset Information

0

Sequential BN-doping induced tuning of electronic properties in zigzag-edged graphene nanoribbons: a computational approach.


ABSTRACT: We employed first-principles methods to elaborate doping induced electronic and magnetic perturbations in one-dimensional zigzag graphene nanoribbon (ZGNR) superlattices. Consequently, the incorporation of alternate boron and nitrogen (hole-electron) centers into the hexagonal network instituted substantial modulations to electronic and magnetic properties of ZGNR. Our theoretical analysis manifested some controlled changes to electronic and magnetic properties of the ZGNR by tuning the positions (array) of impurity centers in the carbon network. Subsequent DFT based calculations also suggested that the site-specific alternate electron-hole (B/N) doping could regulate the band-gaps of the superlattices within a broad range of energy. The consequence of variation in the width of ZGNR in the electronic environment of the system was also tested. The systematic analysis of various parameters such as the structural orientations, spin-arrangements, the density of states (DOS), band structures, and local density of states envisioned a basis for the band-gap engineering in ZGNR and attributed to its feasible applications in next generation electronic device fabrication.

SUBMITTER: Sarmah A 

PROVIDER: S-EPMC9078980 | biostudies-literature | 2018 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Sequential BN-doping induced tuning of electronic properties in zigzag-edged graphene nanoribbons: a computational approach.

Sarmah Amrit A   Hobza Pavel P  

RSC advances 20180319 20


We employed first-principles methods to elaborate doping induced electronic and magnetic perturbations in one-dimensional zigzag graphene nanoribbon (ZGNR) superlattices. Consequently, the incorporation of alternate boron and nitrogen (hole-electron) centers into the hexagonal network instituted substantial modulations to electronic and magnetic properties of ZGNR. Our theoretical analysis manifested some controlled changes to electronic and magnetic properties of the ZGNR by tuning the position  ...[more]

Similar Datasets

| S-EPMC7318338 | biostudies-literature
| S-EPMC5691176 | biostudies-literature
| S-EPMC9838101 | biostudies-literature
| S-EPMC4456008 | biostudies-literature
| S-EPMC5552777 | biostudies-other
| S-EPMC9626499 | biostudies-literature
| S-EPMC4560828 | biostudies-literature
| S-EPMC7756885 | biostudies-literature
| S-EPMC8385052 | biostudies-literature
| S-EPMC6941967 | biostudies-literature