Unknown

Dataset Information

0

Enhanced removal of hexavalent chromium from aqueous media using a highly stable and magnetically separable rosin-biochar-coated TiO2@C nanocomposite.


ABSTRACT: Recently, nanosized metal-oxides have been extensively investigated for their ability to remove metal ions from aqueous media. However, the activity and capacity of these nanosized metal-oxides for removing metal ions decrease owing to their agglomeration in aqueous media. Herein, we synthesized a highly stable and magnetically separable rosin-biochar-coated (RBC) TiO2@C nanocomposite through a facile and environment-friendly wet chemical coating process, followed by a one-step heating route (pyrolysis) for efficient removal of Cr(vi) from aqueous solution. An array of techniques, namely, TEM, HRTEM, TEM-EDS, XRD, FTIR, VSM, BET and TGA, were used to characterize the prepared nanocomposite. The pyrolysis of rosin into biochar and the fabrication of Fe onto the RBC-TiO2@C nanocomposite were confirmed by FTIR and XRD examination, respectively. Moreover, TEM and HRTEM images and elemental mapping using TEM-EDS showed good dispersion of iron and carbon on the surface of the RBC-TiO2@C nanocomposite. Sorption of Cr(vi) ions on the surface of the RBC-TiO2@C nanocomposite was very fast and efficient, having a removal efficiency of ∼95% within the 1st minute of reaction. Furthermore, thermodynamic analysis showed negative values of Gibb's free energy at all five temperatures, indicating that the adsorption of Cr(vi) ions on the RBC-TiO2@C nanocomposite was favorable and spontaneous. Conclusively, our results indicate that the RBC-TiO2@C nanocomposite can be used for efficient removal of Cr(vi) from aqueous media due to its novel synthesis and extraordinary adsorption efficacy during a short time period.

SUBMITTER: Yousaf B 

PROVIDER: S-EPMC9082923 | biostudies-literature | 2018 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhanced removal of hexavalent chromium from aqueous media using a highly stable and magnetically separable rosin-biochar-coated TiO<sub>2</sub>@C nanocomposite.

Yousaf Balal B   Liu Guijian G   Abbas Qumber Q   Wang Ruwei R   Ullah Habib H   Mian Md Manik MM   Amina   Rashid Audil A  

RSC advances 20180719 46


Recently, nanosized metal-oxides have been extensively investigated for their ability to remove metal ions from aqueous media. However, the activity and capacity of these nanosized metal-oxides for removing metal ions decrease owing to their agglomeration in aqueous media. Herein, we synthesized a highly stable and magnetically separable rosin-biochar-coated (RBC) TiO<sub>2</sub>@C nanocomposite through a facile and environment-friendly wet chemical coating process, followed by a one-step heatin  ...[more]

Similar Datasets

| S-EPMC8875893 | biostudies-literature
| S-EPMC10682498 | biostudies-literature
| S-EPMC8208999 | biostudies-literature
| S-EPMC10052201 | biostudies-literature
| S-EPMC8123644 | biostudies-literature
| S-EPMC6920423 | biostudies-literature
| S-EPMC11643965 | biostudies-literature
| S-EPMC9320041 | biostudies-literature
| S-EPMC9049069 | biostudies-literature
| S-EPMC10663864 | biostudies-literature