Project description:We analyzed 324,734 SARS-CoV-2 variant screening tests from France enriched with 16,973 whole-genome sequences sampled during September 1, 2021-February 28, 2022. Results showed the estimated growth advantage of the Omicron variant over the Delta variant to be 105% (95% CI 96%-114%) and that of the BA.2 lineage over the BA.1 lineage to be 49% (95% CI 44%-52%). Quantitative PCR cycle threshold values were consistent with an increased ability of Omicron to generate breakthrough infections. Epidemiologic modeling shows that, in spite of its decreased virulence, the Omicron variant can generate important critical COVID-19 activity in hospitals in France. The magnitude of the BA.2 wave in hospitals depends on the level of relaxing of control measures but remains lower than that of BA.1 in median scenarios.
Project description:Since the first reports in summer 2020, SARS-CoV-2 reinfections have raised concerns about the immunogenicity of the virus, which will affect SARS-CoV-2 epidemiology and possibly the burden of COVID-19 on our societies in the future. This study provides data on the frequency and characteristics of possible reinfections, using the French national COVID-19 testing database. The Omicron variant had a large impact on the frequency of possible reinfections in France, which represented 3.8% of all confirmed COVID-19 cases since December 2021.
Project description:The SARS-CoV-2 21K/BA.1, 21L/BA.2, and BA.3 Omicron variants have recently emerged worldwide. To date, the 21L/BA.2 Omicron variant has remained very minority globally but became predominant in Denmark instead of the 21K/BA.1 variant. Here, we describe the first cases diagnosed with this variant in south-eastern France. We identified 13 cases using variant-specific qPCR and next-generation sequencing between 28/11/2021 and 31/01/2022, the first two cases being diagnosed in travelers returning from Tanzania. Overall, viral genomes displayed a mean (±standard deviation) number of 65.9 ± 2.5 (range, 61-69) nucleotide substitutions and 31.0 ± 8.3 (27-50) nucleotide deletions, resulting in 49.6 ± 2.2 (45-52) amino acid substitutions (including 28 in the spike protein) and 12.4 ± 1.1 (12-15) amino acid deletions. Phylogeny showed the distribution in three different clusters of these genomes, which were most closely related to genomes from England and South Africa, from Singapore and Nepal, or from France and Denmark. Structural predictions highlighted a significant enlargement and flattening of the surface of the 21L/BA.2 N-terminal domain of the spike protein compared to that of the 21K/BA.1 Omicron variant, which may facilitate initial viral interactions with lipid rafts. Close surveillance is needed at global, country, and center scales to monitor the incidence and clinical outcome of the 21L/BA.2 Omicron variant.
Project description:Data on reinfection in large Asian populations are limited. In this study, we aimed to evaluate the reinfection rate, disease severity, and time interval between the infections in the symptomatic and asymptomatic populations which are firstl infected with BA.2 Omicron Variant. We retrospectively included adult patients with COVID-19 discharged from four designated hospitals between 27 April 2021 and 30 November 2022, who were interviewed via telephone from 29 January to 1 March 2023. Univariable and multivariable analyses were used to explore risk factors associated with reinfection. A total of 16,558 patients were followed up, during the telephone survey of an average of 310.0 days, 1610 (9.72%) participants self-reported reinfection. The mean time range of reinfection was 257.9 days. The risks for reinfection were analysed using multivariable logistic regression. Patients with severe first infection were at higher risk for reinfection (aORs, 2.50; P < 0.001). The male (aORs,0.82; P < 0.001), the elderly (aORs, 0.44; P < 0.001), and patients with full vaccination (aORs, 0.67; P < 0.001) or booster (aORs, 0.63; P < 0.001) had the lower risk of reinfection. Patients over 60 years of age (aORs,9.02; P = 0.006) and those with ≥2 comorbidities (aORs,11.51; P = 0.016). were at higher risk for severe reinfection. The number of clinical manifestations of reinfection increases in people with severe first infection (aORs, 2.82; P = 0.023). The overall reinfection rate was 9.72%, and the reinfection rate of Omicron-to-Omicron subvariants was 9.50% at one year. The severity of Omicron-Omicron reinfection decreased. Data from our clinical study may provide clinical evidence and bolster response preparedness for future COVID-19 reinfection waves.
Project description:Several SARS-CoV-2 variants that evolved during the COVID-19 pandemic have appeared to differ in severity, based on analyses of single-country datasets. With decreased testing and sequencing, international collaborative studies will become increasingly important for timely assessment of the severity of new variants. Therefore, a joint WHO Regional Office for Europe and ECDC working group was formed to produce and pilot a standardised study protocol to estimate relative case-severity of SARS-CoV-2 variants during periods when two variants were co-circulating. The study protocol and its associated statistical analysis code was applied by investigators in Denmark, England, Luxembourg, Norway, Portugal and Scotland to assess the severity of cases with the Omicron BA.1 virus variant relative to Delta. After pooling estimates using meta-analysis methods (random effects estimates), the risk of hospital admission (adjusted hazard ratio (aHR) = 0.41; 95% confidence interval (CI): 0.31-0.54), admission to intensive care unit (aHR = 0.12; 95% CI: 0.05-0.27) and death (aHR = 0.31; 95% CI: 0.28-0.35) was lower for Omicron BA.1 compared with Delta cases. The aHRs varied by age group and vaccination status. In conclusion, this study demonstrates the feasibility of conducting variant severity analyses in a multinational collaborative framework and adds evidence for the reduced severity of the Omicron BA.1 variant.
Project description:We compared vaccine effectiveness against severe COVID-19 between December 2021 and March 2022 when Omicron BA.1 and BA.2 were the dominating SARS-CoV-2 variants in Scania county, Sweden. Effectiveness remained above 80% after the transition from BA.1 to BA.2 among people with at least three vaccine doses but the point estimate decreased markedly to 54% among those with only two doses. Protection from prior infection was also lower after the transition to BA.2. Booster vaccination seems necessary to maintain sufficient protection.
Project description:BackgroundUnderstanding the usefulness of additional COVID-19 vaccine doses-particularly given varying disease incidence-is needed to support public health policy. We characterize the benefits of COVID-19 booster doses using number needed to vaccinate (NNV) to prevent one COVID-19-associated hospitalization or emergency department encounter.MethodsWe conducted a retrospective cohort study of immunocompetent adults at five health systems in four U.S. states during SARS-CoV-2 Omicron BA.1 predominance (December 2021-February 2022). Included patients completed a primary mRNA COVID-19 vaccine series and were either eligible to or received a booster dose. NNV were estimated using hazard ratios for each outcome (hospitalization and emergency department encounters), with results stratified by three 25-day periods and site.Findings1,285,032 patients contributed 938 hospitalizations and 2076 emergency department encounters. 555,729 (43.2%) patients were aged 18-49 years, 363,299 (28.3%) 50-64 years, and 366,004 (28.5%) ≥65 years. Most patients were female (n = 765,728, 59.6%), White (n = 990,224, 77.1%), and non-Hispanic (n = 1,063,964, 82.8%). 37.2% of patients received a booster and 62.8% received only two doses. Median estimated NNV to prevent one hospitalization was 205 (range 44-615) and NNV was lower across study periods for adults aged ≥65 years (110, 46, and 88, respectively) and those with underlying medical conditions (163, 69, and 131, respectively). Median estimated NNV to prevent one emergency department encounter was 156 (range 75-592).InterpretationThe number of patients needed to receive a booster dose was highly dependent on local disease incidence, outcome severity, and patient risk factors for moderate-to-severe disease.FundingFunding was provided by the Centers for Disease Control and Prevention though contract 75D30120C07986 to Westat, Inc. and contract 75D30120C07765 to Kaiser Foundation Hospitals.
Project description:ObjectivesWe aimed to quantify how the vaccine efficacy of BNT162b2, messenger RNA-1273, AD26.COV2-S, and ChAdOx1 nCoV-19 against detected infection by the SARS-CoV-2 Delta and Omicron variants varied by time since the last dose, vaccine scheme, age, and geographic areas.MethodsWe analyzed 3,261,749 community polymerase chain reaction tests conducted by private laboratories in France from December 2021 to March 2022 with a test-negative design comparing vaccinated to unvaccinated individuals.ResultsEfficacy against detected infection by Delta was 89% (95% confidence interval, 86-91%) at 2 weeks, down to 59% (56-61%) at 26 weeks and more after the second dose. Efficacy against Omicron was 48% (45-51%) at 2 weeks, down to 4% (2-5%) at 16 weeks after the second dose. A third dose temporarily restored efficacy. Efficacy against Omicron was lower in children and the elderly. Geographical variability in efficacy may reflect variability in the ratio of the number of contacts of vaccinated vs unvaccinated individuals. This ratio ranged from 0 to +50% across departments and correlated with the number of restaurants and bars per inhabitant (beta = 15.0 [0.75-29], P-value = 0.04), places that only vaccinated individuals could access in the study period.ConclusionSARS-CoV-2 vaccines conferred low and transient protection against Omicron infection.