Unknown

Dataset Information

0

Precisely synthesized segmented polyurethanes toward block sequence-controlled drug delivery.


ABSTRACT: The construction of polyurethanes (PUs) with sequence-controlled block structures remains a serious challenge. Here, we report the precise synthesis of PUs with desirable molecular weight, narrow molecular weight distribution, and controlled block sequences from commercially available monomers. The synthetic procedure is derived from a liquid-phase synthetic methodology, which involves diisocyanate-based iterative protocols in combination with a convergent strategy. Furthermore, a pair of multifunctional PUs with different sequence orders of cationic and anion segments were prepared. We show that the sequence order of functional segments presents an impact on the self-assembly behavior and results in unexpected surface charges of assembled micelles, thereby affecting the protein absorption, cell internalization, biodistribution and antitumor effect of the nanocarriers in vitro and in vivo. This work provides a versatile platform for the development of precise multiblock PUs with structural complexity and functional diversity, and will greatly facilitate the clinical translation of PUs in biomedicine.

SUBMITTER: Song Y 

PROVIDER: S-EPMC9093123 | biostudies-literature | 2022 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Precisely synthesized segmented polyurethanes toward block sequence-controlled drug delivery.

Song Yuanqing Y   Sun Chuandong C   Tian Chenxu C   Ming Hao H   Wang Yanjun Y   Liu Wenkai W   He Nan N   He Xueling X   Ding Mingming M   Li Jiehua J   Luo Feng F   Tan Hong H   Fu Qiang Q  

Chemical science 20220405 18


The construction of polyurethanes (PUs) with sequence-controlled block structures remains a serious challenge. Here, we report the precise synthesis of PUs with desirable molecular weight, narrow molecular weight distribution, and controlled block sequences from commercially available monomers. The synthetic procedure is derived from a liquid-phase synthetic methodology, which involves diisocyanate-based iterative protocols in combination with a convergent strategy. Furthermore, a pair of multif  ...[more]

Similar Datasets

| S-EPMC7563291 | biostudies-literature
| S-EPMC3854524 | biostudies-literature
| S-EPMC9511198 | biostudies-literature
| S-EPMC9350599 | biostudies-literature
2012-09-03 | GSE37285 | GEO
2012-09-03 | E-GEOD-37285 | biostudies-arrayexpress
| S-EPMC9890583 | biostudies-literature