Project description:Mid-study design modifications are becoming increasingly accepted in confirmatory clinical trials, so long as appropriate methods are applied such that error rates are controlled. It is therefore unfortunate that the important case of time-to-event endpoints is not easily handled by the standard theory. We analyze current methods that allow design modifications to be based on the full interim data, i.e., not only the observed event times but also secondary endpoint and safety data from patients who are yet to have an event. We show that the final test statistic may ignore a substantial subset of the observed event times. An alternative test incorporating all event times is found, where a conservative assumption must be made in order to guarantee type I error control. We examine the power of this approach using the example of a clinical trial comparing two cancer therapies.
Project description:Lemurs, the diverse, endemic primates of Madagascar, are thought to represent a classic example of adaptive radiation. Based on the most complete phylogeny of living and extinct lemurs yet assembled, I tested predictions of adaptive radiation theory by estimating rates of speciation, extinction and adaptive phenotypic evolution. As predicted, lemur speciation rate exceeded that of their sister clade by nearly twofold, indicating the diversification dynamics of lemurs and mainland relatives may have been decoupled. Lemur diversification rates did not decline over time, however, as predicted by adaptive radiation theory. Optimal body masses diverged among dietary and activity pattern niches as lineages diversified into unique multidimensional ecospace. Based on these results, lemurs only partially fulfil the predictions of adaptive radiation theory, with phenotypic evolution corresponding to an 'early burst' of adaptive differentiation. The results must be interpreted with caution, however, because over the long evolutionary history of lemurs (approx. 50 million years), the 'early burst' signal of adaptive radiation may have been eroded by extinction.
Project description:Composition bias from Chargaff's second parity rule (PR2) has long been found in sequenced genomes, and is believed to relate strongly with the replication process in microbial genomes. However, some disagreement on the underlying reason for strand composition bias remains. We performed an integrative analysis of various genomic features that might influence composition bias using a large-scale dataset of 1111 genomes. Our results indicate (1) the bias was stronger in obligate intracellular bacteria than in other free-living species (p-value=0.0305); (2) Fusobacteria and Firmicutes had the highest average bias among the 24 microbial phyla analyzed; (3) the strength of selected codon usage bias and generation times were not observably related to strand composition bias (p-value=0.3247); (4) significant negative relationships were found between GC content, genome size, rearrangement frequency, Clusters of Orthologous Groups (COG) functional subcategories A, C, I, Q, and composition bias (p-values<1.0×10(-8)); (5) gene density and COG functional subcategories D, F, J, L, and V were positively related with composition bias (p-value<2.2×10(-16)); and (6) gene density made the most important contribution to composition bias, indicating transcriptional bias was associated strongly with strand composition bias. Therefore, strand composition bias was found to be influenced by multiple factors with varying weights.
Project description:Fifty per cent of the genome is discontinuously replicated on the lagging strand as Okazaki fragments. Eukaryotic Okazaki fragments remain poorly characterized and, because nucleosomes are rapidly deposited on nascent DNA, Okazaki fragment processing and nucleosome assembly potentially affect one another. Here we show that ligation-competent Okazaki fragments in Saccharomyces cerevisiae are sized according to the nucleosome repeat. Using deep sequencing, we demonstrate that ligation junctions preferentially occur near nucleosome midpoints rather than in internucleosomal linker regions. Disrupting chromatin assembly or lagging-strand polymerase processivity affects both the size and the distribution of Okazaki fragments, suggesting a role for nascent chromatin, assembled immediately after the passage of the replication fork, in the termination of Okazaki fragment synthesis. Our studies represent the first high-resolution analysis--to our knowledge--of eukaryotic Okazaki fragments in vivo, and reveal the interconnection between lagging-strand synthesis and chromatin assembly.
Project description:The characterization of functional elements in genomes relies on the identification of the footprints of natural selection. In this quest, taking into account neutral evolutionary processes such as mutation and genetic drift is crucial because these forces can generate patterns that may obscure or mimic signatures of selection. In mammals, and probably in many eukaryotes, another such confounding factor called GC-Biased Gene Conversion (gBGC) has been documented. This mechanism generates patterns identical to what is expected under selection for higher GC-content, specifically in highly recombining genomic regions. Recent results have suggested that a mysterious selective force favouring higher GC-content exists in Bacteria but the possibility that it could be gBGC has been excluded. Here, we show that gBGC is probably at work in most if not all bacterial species. First we find a consistent positive relationship between the GC-content of a gene and evidence of intra-genic recombination throughout a broad spectrum of bacterial clades. Second, we show that the evolutionary force responsible for this pattern is acting independently from selection on codon usage, and could potentially interfere with selection in favor of optimal AU-ending codons. A comparison with data from human populations shows that the intensity of gBGC in Bacteria is comparable to what has been reported in mammals. We propose that gBGC is not restricted to sexual Eukaryotes but also widespread among Bacteria and could therefore be an ancestral feature of cellular organisms. We argue that if gBGC occurs in bacteria, it can account for previously unexplained observations, such as the apparent non-equilibrium of base substitution patterns and the heterogeneity of gene composition within bacterial genomes. Because gBGC produces patterns similar to positive selection, it is essential to take this process into account when studying the evolutionary forces at work in bacterial genomes.
Project description:The two DNA strands of the nuclear genome are replicated asymmetrically using three DNA polymerases, α, δ, and ε. Current evidence suggests that DNA polymerase ε (Pol ε) is the primary leading strand replicase, whereas Pols α and δ primarily perform lagging strand replication. The fact that these polymerases differ in fidelity and error specificity is interesting in light of the fact that the stability of the nuclear genome depends in part on the ability of mismatch repair (MMR) to correct different mismatches generated in different contexts during replication. Here we provide the first comparison, to our knowledge, of the efficiency of MMR of leading and lagging strand replication errors. We first use the strand-biased ribonucleotide incorporation propensity of a Pol ε mutator variant to confirm that Pol ε is the primary leading strand replicase in Saccharomyces cerevisiae. We then use polymerase-specific error signatures to show that MMR efficiency in vivo strongly depends on the polymerase, the mismatch composition, and the location of the mismatch. An extreme case of variation by location is a T-T mismatch that is refractory to MMR. This mismatch is flanked by an AT-rich triplet repeat sequence that, when interrupted, restores MMR to > 95% efficiency. Thus this natural DNA sequence suppresses MMR, placing a nearby base pair at high risk of mutation due to leading strand replication infidelity. We find that, overall, MMR most efficiently corrects the most potentially deleterious errors (indels) and then the most common substitution mismatches. In combination with earlier studies, the results suggest that significant differences exist in the generation and repair of Pol α, δ, and ε replication errors, but in a generally complementary manner that results in high-fidelity replication of both DNA strands of the yeast nuclear genome.
Project description:The antiparallel structure of DNA requires lagging strand synthesis to proceed in the opposite direction of the replication fork. This imposes unique events that occur only on the lagging strand, such as primase binding to DnaB helicase, RNA synthesis, and SS B antigen (SSB) displacement during Okazaki fragment extension. Single-molecule and ensemble techniques are combined to examine the effect of lagging strand events on the Escherichia coli replisome rate and processivity. We find that primase activity lowers replisome processivity but only when lagging strand extension is inoperative. rNTPs also lower replisome processivity. However, the negative effects of primase and rNTPs on processivity are overcome by the extra grip on DNA provided by the lagging strand polymerases. Visualization of single molecules reveals that SSB accumulates at forks and may wrap extensive amounts of single-strand DNA. Interestingly SSB has an inter-strand positive effect on the rate of the leading strand based in its interaction with the replicase χ-subunit. Further, the lagging strand polymerase is faster than leading strand synthesis, indicating that replisome rate is limited by the helicase. Overall, lagging strand events that impart negative effects on the replisome are counterbalanced by the positive effects of SSB and additional sliding clamps during Okazaki fragment extension.
Project description:DNA polymerase η (pol η) is best known for its ability to bypass UV-induced thymine-thymine (T-T) dimers and other bulky DNA lesions, but pol η also has other cellular roles. Here, we present evidence that pol η competes with DNA polymerases α and δ for the synthesis of the lagging strand genome-wide, where it also shows a preference for T-T in the DNA template. Moreover, we found that the C-terminus of pol η, which contains a PCNA-Interacting Protein motif is required for pol η to function in lagging strand synthesis. Finally, we provide evidence that a pol η dependent signature is also found to be lagging strand specific in patients with skin cancer. Taken together, these findings provide insight into the physiological role of DNA synthesis by pol η and have implications for our understanding of how our genome is replicated to avoid mutagenesis, genome instability and cancer.
Project description:DNA mismatch repair (MMR) pathways coordinate the excision and re-synthesis of newly-replicated DNA if a mismatched base-pair has been identified by protein MutS or MutS homologues (MSHs) after replication. DNA excision during MMR is initiated at single-strand breaks (SSBs) in vitro, and several redundant processes have been observed in reconstituted systems which either require a pre-formed SSB in the DNA or require a mismatch-activated nicking endonuclease to introduce a SSB in order to initiate MMR. However, the conditions under which each of these processes may actually occur in living cells have remained obscured by the limitations of current MMR assays. Here we use a novel assay involving chemically-modified oligonucleotide probes to insert targeted DNA 'mismatches' directly into the genome of living bacteria to interrogate their replication-coupled repair processes quantitatively in a strand-, orientation-, and mismatched nucleotide-specific manner. This 'semi-protected oligonucleotide recombination' (SPORE) assay reveals direct evidence in Escherichia coli of an efficient endonuclease-independent MMR process on the lagging strand-a mechanism that has long-since been considered for lagging-strand repair but never directly shown until now. We find endonuclease-independent MMR is coordinated asymmetrically with respect to the replicating DNA-directed primarily from 3'- of the mismatch-and that repair coordinated from 3'- of the mismatch is in fact the primary mechanism of lagging-strand MMR. While further work is required to explore and identify the molecular requirements for this alternative endonuclease-independent MMR pathway, these findings made possible using the SPORE assay are the first direct report of this long-suspected mechanism in vivo.