Unknown

Dataset Information

0

Investigation of metal mobility in gold and silver mine tailings by single-step and sequential extractions.


ABSTRACT: Metal leachate from mine tailings has the potential to release toxic metals into the surrounding environment. A single-step extraction procedure mimicking rainwater and a three-step BCR sequential extraction procedure (acid, reducing and oxidizing conditions) were applied to gold (GMT) and silver (SMT) mine tailings. Major (Al, Ca, Fe, Mg, and Mn) and trace metals were monitored to better understand the mobility and geochemistry of these metals when exposed to various environmental leaching conditions. Rainwater extraction released only small quantities of metals, while the three-step BCR extraction was more effective in mobilizing metals from the tailings. Under the acidic conditions of BCR step 1, Ca, Mg, Cd, Cu, and Mn were released in high concentrations. The dissolution of Fe, Ca, and Mg were dominant along with Pb in step 2 (reducing conditions). In step 3 (oxidizing conditions), Fe was the most dominant species together with Co, Cu, Ni, and Se. A high fraction of Al, Be, Cr, Li, Mo, Sb, Tl, and V remained in the residue. From SMT, larger quantities of As, Ca, Cd, and Zn were released compared to GMT. The BCR extraction could be applied to tailings to predict the potential release of toxic metals from mine wastes; however, excessive amounts of Ca and Fe in the tailings could cause carry-overs and incomplete extraction and carry-overs, resulting in a misinterpretation of results.

SUBMITTER: Kumkrong P 

PROVIDER: S-EPMC9098622 | biostudies-literature | 2022 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Investigation of metal mobility in gold and silver mine tailings by single-step and sequential extractions.

Kumkrong Paramee P   Dy Eben E   Tyo Daniel D DD   Jiang Cindy C   Gedara Pihilligawa Indu I   Kingston David D   Mercier Patrick H J PHJ  

Environmental monitoring and assessment 20220512 6


Metal leachate from mine tailings has the potential to release toxic metals into the surrounding environment. A single-step extraction procedure mimicking rainwater and a three-step BCR sequential extraction procedure (acid, reducing and oxidizing conditions) were applied to gold (GMT) and silver (SMT) mine tailings. Major (Al, Ca, Fe, Mg, and Mn) and trace metals were monitored to better understand the mobility and geochemistry of these metals when exposed to various environmental leaching cond  ...[more]

Similar Datasets

| S-EPMC7025808 | biostudies-literature
| S-EPMC5319768 | biostudies-literature
| S-EPMC6130231 | biostudies-literature
| S-EPMC8895307 | biostudies-literature
| S-EPMC348930 | biostudies-literature
| PRJNA510563 | ENA
| S-EPMC9681136 | biostudies-literature
| S-EPMC11861154 | biostudies-literature
| S-EPMC5721143 | biostudies-literature
| S-EPMC5568564 | biostudies-literature