Unknown

Dataset Information

0

Cardanol-Derived Epoxy Resins as Biobased Gel Polymer Electrolytes for Potassium-Ion Conduction.


ABSTRACT: In this study, biobased gel polymer electrolyte (GPE) membranes were developed via the esterification reaction of a cardanol-based epoxy resin with glutaric anhydride, succinic anhydride, and hexahydro-4-methylphthalic anhydride. Nonisothermal differential scanning calorimetry was used to assess the optimal curing time and temperature of the formulations, evidencing a process activation energy of ∼65-70 kJ mol-1. A rubbery plateau modulus of 0.65-0.78 MPa and a crosslinking density of 2 × 10-4 mol cm-3 were found through dynamic mechanical analysis. Based on these characteristics, such biobased membranes were tested for applicability as GPEs for potassium-ion batteries (KIBs), showing an excellent electrochemical stability toward potassium metal in the -0.2-5 V voltage range and suitable ionic conductivity (10-3 S cm-1) at room temperature. This study demonstrates the practical viability of these biobased materials as efficient GPEs for the fabrication of KIBs, paving the path to increased sustainability in the field of next-generation battery technologies.

SUBMITTER: Manarin E 

PROVIDER: S-EPMC9112699 | biostudies-literature | 2022 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cardanol-Derived Epoxy Resins as Biobased Gel Polymer Electrolytes for Potassium-Ion Conduction.

Manarin Eleonora E   Corsini Francesca F   Trano Sabrina S   Fagiolari Lucia L   Amici Julia J   Francia Carlotta C   Bodoardo Silvia S   Turri Stefano S   Bella Federico F   Griffini Gianmarco G  

ACS applied polymer materials 20220429 5


In this study, biobased gel polymer electrolyte (GPE) membranes were developed via the esterification reaction of a cardanol-based epoxy resin with glutaric anhydride, succinic anhydride, and hexahydro-4-methylphthalic anhydride. Nonisothermal differential scanning calorimetry was used to assess the optimal curing time and temperature of the formulations, evidencing a process activation energy of ∼65-70 kJ mol<sup>-1</sup>. A rubbery plateau modulus of 0.65-0.78 MPa and a crosslinking density of  ...[more]

Similar Datasets

| S-EPMC8264931 | biostudies-literature
| S-EPMC9370478 | biostudies-literature
| S-EPMC7179237 | biostudies-literature
| S-EPMC10785085 | biostudies-literature
| S-EPMC11912104 | biostudies-literature
| S-EPMC10189243 | biostudies-literature
| S-EPMC3824160 | biostudies-literature
| S-EPMC6644176 | biostudies-literature
| S-EPMC10461727 | biostudies-literature
| S-EPMC3487835 | biostudies-literature