Project description:Artificial intelligence-powered medical technologies are rapidly evolving into applicable solutions for clinical practice. Deep learning algorithms can deal with increasing amounts of data provided by wearables, smartphones, and other mobile monitoring sensors in different areas of medicine. Currently, only very specific settings in clinical practice benefit from the application of artificial intelligence, such as the detection of atrial fibrillation, epilepsy seizures, and hypoglycemia, or the diagnosis of disease based on histopathological examination or medical imaging. The implementation of augmented medicine is long-awaited by patients because it allows for a greater autonomy and a more personalized treatment, however, it is met with resistance from physicians which were not prepared for such an evolution of clinical practice. This phenomenon also creates the need to validate these modern tools with traditional clinical trials, debate the educational upgrade of the medical curriculum in light of digital medicine as well as ethical consideration of the ongoing connected monitoring. The aim of this paper is to discuss recent scientific literature and provide a perspective on the benefits, future opportunities and risks of established artificial intelligence applications in clinical practice on physicians, healthcare institutions, medical education, and bioethics.
Project description:The ambition of precision medicine is to design and optimize the pathway for diagnosis, therapeutic intervention, and prognosis by using large multidimensional biological datasets that capture individual variability in genes, function and environment. This offers clinicians the opportunity to more carefully tailor early interventions- whether treatment or preventative in nature-to each individual patient. Taking advantage of high performance computer capabilities, artificial intelligence (AI) algorithms can now achieve reasonable success in predicting risk in certain cancers and cardiovascular disease from available multidimensional clinical and biological data. In contrast, less progress has been made with the neurodevelopmental disorders, which include intellectual disability (ID), autism spectrum disorder (ASD), epilepsy and broader neurodevelopmental disorders. Much hope is pinned on the opportunity to quantify risk from patterns of genomic variation, including the functional characterization of genes and variants, but this ambition is confounded by phenotypic and etiologic heterogeneity, along with the rare and variable penetrant nature of the underlying risk variants identified so far. Structural and functional brain imaging and neuropsychological and neurophysiological markers may provide further dimensionality, but often require more development to achieve sensitivity for diagnosis. Herein, therefore, lies a precision medicine conundrum: can artificial intelligence offer a breakthrough in predicting risks and prognosis for neurodevelopmental disorders? In this review we will examine these complexities, and consider some of the strategies whereby artificial intelligence may overcome them.
Project description:Precision medicine has the potential to revolutionize the way cardiovascular diseases are diagnosed, predicted, and treated by tailoring treatment strategies to the individual characteristics of each patient. Artificial intelligence (AI) has recently emerged as a promising tool for improving the accuracy and efficiency of precision cardiovascular medicine. In this scoping review, we aimed to identify and summarize the current state of the literature on the use of AI in precision cardiovascular medicine. A comprehensive search of electronic databases, including Scopes, Google Scholar, and PubMed, was conducted to identify relevant studies. After applying inclusion and exclusion criteria, a total of 28 studies were included in the review. We found that AI is being increasingly applied in various areas of cardiovascular medicine, including the diagnosis, prognosis of cardiovascular diseases, risk prediction and stratification, and treatment planning. As a result, most of these studies focused on prediction (50%), followed by diagnosis (21%), phenotyping (14%), and risk stratification (14%). A variety of machine learning models were utilized in these studies, with logistic regression being the most used (36%), followed by random forest (32%), support vector machine (25%), and deep learning models such as neural networks (18%). Other models, such as hierarchical clustering (11%), Cox regression (11%), and natural language processing (4%), were also utilized. The data sources used in these studies included electronic health records (79%), imaging data (43%), and omics data (4%). We found that AI is being increasingly applied in various areas of cardiovascular medicine, including the diagnosis, prognosis of cardiovascular diseases, risk prediction and stratification, and treatment planning. The results of the review showed that AI has the potential to improve the performance of cardiovascular disease diagnosis and prognosis, as well as to identify individuals at high risk of developing cardiovascular diseases. However, further research is needed to fully evaluate the clinical utility and effectiveness of AI-based approaches in precision cardiovascular medicine. Overall, our review provided a comprehensive overview of the current state of knowledge in the field of AI-based methods for precision cardiovascular medicine and offered new insights for researchers interested in this research area.
Project description:BackgroundThis review explores the bioethical implementation of artificial intelligence (AI) in medicine and in ophthalmology. AI, which was first introduced in the 1950s, is defined as "the machine simulation of human mental reasoning, decision making, and behavior". The increased power of computing, expansion of storage capacity, and compilation of medical big data helped the AI implementation surge in medical practice and research. Ophthalmology is a leading medical specialty in applying AI in screening, diagnosis, and treatment. The first Food and Drug Administration approved autonomous diagnostic system served to diagnose and classify diabetic retinopathy. Other ophthalmic conditions such as age-related macular degeneration, glaucoma, retinopathy of prematurity, and congenital cataract, among others, implemented AI too.PurposeTo review the contemporary literature of the bioethical issues of AI in medicine and ophthalmology, classify ethical issues in medical AI, and suggest possible standardizations of ethical frameworks for AI implementation.MethodsKeywords were searched on Google Scholar and PubMed between October 2019 and April 2020. The results were reviewed, cross-referenced, and summarized. A total of 284 references including articles, books, book chapters, and regulatory reports and statements were reviewed, and those that were relevant were cited in the paper.ResultsMost sources that studied the use of AI in medicine explored the ethical aspects. Bioethical challenges of AI implementation in medicine were categorized into 6 main categories. These include machine training ethics, machine accuracy ethics, patient-related ethics, physician-related ethics, shared ethics, and roles of regulators.ConclusionsThere are multiple stakeholders in the ethical issues surrounding AI in medicine and ophthalmology. Attention to the various aspects of ethics related to AI is important especially with the expanding use of AI. Solutions of ethical problems are envisioned to be multifactorial.
Project description:In healthcare, the development and deployment of insufficiently fair systems of artificial intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models stratified across subpopulations have revealed inequalities in how patients are diagnosed, treated and billed. In this Perspective, we outline fairness in machine learning through the lens of healthcare, and discuss how algorithmic biases (in data acquisition, genetic variation and intra-observer labelling variability, in particular) arise in clinical workflows and the resulting healthcare disparities. We also review emerging technology for mitigating biases via disentanglement, federated learning and model explainability, and their role in the development of AI-based software as a medical device.
Project description:Microbubbles are nanosized gas-filled bubbles. They are used in clinical diagnostics, in medical imaging, as contrast agents in ultrasound imaging, and as transporters for targeted drug delivery. They can also be used to treat thrombosis, neoplastic diseases, open arteries and vascular plaques and for localized transport of chemotherapies in cancer patients. Microbubbles can be filled with any type of therapeutics, cure agents, growth factors, extracellular vesicles, exosomes, miRNAs, and drugs. Microbubbles protect their cargo from immune attack because of their specialized encapsulated shell composed of lipid and protein. Filled with curative medicine, they could effectively circulate through the whole body safely and efficiently to reach the target area. The advanced bubble-based drug-delivery system, integrated with artificial intelligence for guidance, holds great promise for the targeted delivery of drugs and medicines.
Project description:Artificial intelligence (AI) is expected to affect various fields of medicine substantially and has the potential to improve many aspects of healthcare. However, AI has been creating much hype, too. In applying AI technology to patients, medical professionals should be able to resolve any anxiety, confusion, and questions that patients and the public may have. Also, they are responsible for ensuring that AI becomes a technology beneficial for patient care. These make the acquisition of sound knowledge and experience about AI a task of high importance for medical students. Preparing for AI does not merely mean learning information technology such as computer programming. One should acquire sufficient knowledge of basic and clinical medicines, data science, biostatistics, and evidence-based medicine. As a medical student, one should not passively accept stories related to AI in medicine in the media and on the Internet. Medical students should try to develop abilities to distinguish correct information from hype and spin and even capabilities to create thoroughly validated, trustworthy information for patients and the public.
Project description:BackgroundArtificial intelligence (AI) applications that utilize machine learning are on the rise in clinical research and provide highly promising applications in specific use cases. However, wide clinical adoption remains far off. This review reflects on common barriers and current solution approaches.SummaryKey challenges are abbreviated as the RISE criteria: Regulatory aspects, Interpretability, interoperability, and the need for Structured data and Evidence. As reoccurring barriers of AI adoption, these concepts are delineated and complemented by points to consider and possible solutions for effective and safe use of AI applications.Key messagesThere is a fraction of AI applications with proven clinical benefits and regulatory approval. Many new promising systems are the subject of current research but share common issues for wide clinical adoption. The RISE criteria can support preparation for challenges and pitfalls when designing or introducing AI applications into clinical practice.
Project description:BackgroundArtificial intelligence (AI) is being increasingly adopted in the health care industry for administrative tasks, patient care operations, and medical research.ObjectiveWe aimed to examine health care workers' opinions about the adoption and implementation of AI-powered technology in the health care industry.MethodsData were comments about AI posted on a web-based forum by 905 health care professionals from at least 77 countries, from May 2013 to October 2021. Structural topic modeling was used to identify the topics of discussion, and hierarchical clustering was performed to determine how these topics cluster into different groups.ResultsOverall, 12 topics were identified from the collected comments. These comments clustered into 2 groups: impact of AI on health care system and practice and AI as a tool for disease screening, diagnosis, and treatment. Topics associated with negative sentiments included concerns about AI replacing human workers, impact of AI on traditional medical diagnostic procedures (ie, patient history and physical examination), accuracy of the algorithm, and entry of IT companies into the health care industry. Concerns about the legal liability for using AI in treating patients were also discussed. Positive topics about AI included the opportunity offered by the technology for improving the accuracy of image-based diagnosis and for enhancing personalized medicine.ConclusionsThe adoption and implementation of AI applications in the health care industry are eliciting both enthusiasm and concerns about patient care quality and the future of health care professions. The successful implementation of AI-powered technologies requires the involvement of all stakeholders, including patients, health care organization workers, health insurance companies, and government regulatory agencies.