Unknown

Dataset Information

0

L-Arginine/nitric oxide regulates skeletal muscle development via muscle fibre-specific nitric oxide/mTOR pathway in chickens.


ABSTRACT: L-Arginine (L-Arg), the precursor of nitric oxide (NO), plays an important role in muscle function. Fast-twitch glycolytic fibres are more susceptible to age-related atrophy than slow-twitch oxidative fibres. The effect of L-Arg/NO on protein metabolism of fast- and slow-twitch muscle fibres was evaluated in chickens. In Exp. 1, 48 chicks at 1 day old were divided into 4 groups of 12 birds and subjected to 4 treatments: basal diet without supplementation or supplemented with 1% L-Arg, and water supplemented with or without L-nitro-arginine methyl ester (L-NAME, 18.5 mM). In Exp. 2, 48 chicks were divided into 4 groups of 12 birds fed with the basal diet and subjected to the following treatments: tap water (control), tap water supplemented with L-NAME (18.5 mM), or molsidomine (MS, 0.1 mM), or 18.5 mM L-NAME + 0.1 mM MS (NAMS). The regulatory effect of L-Arg/NO was further investigated in vitro with myoblasts obtained from chicken embryo pectoralis major (PM) and biceps femoris (BF). In vivo, dietary L-Arg supplementation increased breast (+14.94%, P < 0.05) and thigh muscle mass (+23.40%, P < 0.05); whereas, MS treatment had no detectable influence. However, L-NAME treatment blocked the beneficial influence of L-Arg on muscle development. L-Arg decreased (P < 0.05) protein synthesis rate, phosphorylated mTOR and ribosomal protein S6 kinase beta-1 (p70S6K) levels in breast muscle, which was recovered by L-NAME treatment. In vitro, L-Arg or sodium nitroprusside (SNP) reduced protein synthesis rate, suppressed phosphorylated mTOR/p70S6K and decreased atrogin-1 and muscle RING finger 1 (MuRF1) in myoblasts from PM muscle (P < 0.05). L-NAME abolished the inhibitory effect of L-Arg on protein synthesis and the mTOR/p70S6K pathway. However, myoblasts from BF muscle showed the weak influence. Moreover, blocking the mTOR/p70S6K pathway with rapamycin suppressed protein synthesis of the 2 types of myoblasts; whereas, the protein expression of atrogin-1 and MuRF1 levels were restricted only in myoblasts from PM muscle. In conclusion, L-Arg/NO/mTOR/p70S6K pathway enhances protein accumulation and muscle development in fast-twitch glycolytic muscle in chickens. L-Arg/NO regulates protein turnover in a muscle fibre specific way, which highlights the potential clinical application in fast-twitch glycolytic muscle fibres.

SUBMITTER: Wang R 

PROVIDER: S-EPMC9125674 | biostudies-literature | 2022 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

L-Arginine/nitric oxide regulates skeletal muscle development via muscle fibre-specific nitric oxide/mTOR pathway in chickens.

Wang Ruxia R   Li Kelin K   Sun Li L   Jiao Hongchao H   Zhou Yunlei Y   Li Haifang H   Wang Xiaojuan X   Zhao Jingpeng J   Lin Hai H  

Animal nutrition (Zhongguo xu mu shou yi xue hui) 20220502


L-Arginine (L-Arg), the precursor of nitric oxide (NO), plays an important role in muscle function. Fast-twitch glycolytic fibres are more susceptible to age-related atrophy than slow-twitch oxidative fibres. The effect of L-Arg/NO on protein metabolism of fast- and slow-twitch muscle fibres was evaluated in chickens. In Exp. 1, 48 chicks at 1 day old were divided into 4 groups of 12 birds and subjected to 4 treatments: basal diet without supplementation or supplemented with 1% L-Arg, and water  ...[more]

Similar Datasets

| S-EPMC11173221 | biostudies-literature
| S-EPMC11486814 | biostudies-literature
| S-EPMC9890773 | biostudies-literature
| S-EPMC5447880 | biostudies-literature
| S-EPMC5467110 | biostudies-literature
| S-EPMC3566578 | biostudies-literature
| S-EPMC6536008 | biostudies-literature
| S-EPMC4272808 | biostudies-literature
| S-EPMC4552045 | biostudies-literature
| S-EPMC5444718 | biostudies-literature