Unknown

Dataset Information

0

Towards n-type conductivity in hexagonal boron nitride.


ABSTRACT: Asymmetric transport characteristic in n- and p-type conductivity has long been a fundamental difficulty in wide bandgap semiconductors. Hexagonal boron nitride (h-BN) can achieve p-type conduction, however, the n-type conductivity still remains unavailable. Here, we demonstrate a concept of orbital split induced level engineering through sacrificial impurity coupling and the realization of efficient n-type transport in 2D h-BN monolayer. We find that the O 2pz orbital has both symmetry and energy matching to the Ge 4pz orbital, which promises a strong coupling. The introduction of side-by-side O to Ge donor can effectively push up the donor level by the formation of another sacrificial deep level. We discover that a Ge-O2 trimer brings the extremely shallow donor level and very low ionization energy. By low-pressure chemical vapor deposition method, we obtain the in-situ Ge-O doping in h-BN monolayer and successfully achieve both through-plane (~100 nA) and in-plane (~20 nA) n-type conduction. We fabricate a vertically-stacked n-hBN/p-GaN heterojunction and show distinct rectification characteristics. The sacrificial impurity coupling method provides a highly viable route to overcome the n-type limitation of h-BN and paves the way for the future 2D optoelectronic devices.

SUBMITTER: Lu S 

PROVIDER: S-EPMC9166779 | biostudies-literature | 2022 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications


Asymmetric transport characteristic in n- and p-type conductivity has long been a fundamental difficulty in wide bandgap semiconductors. Hexagonal boron nitride (h-BN) can achieve p-type conduction, however, the n-type conductivity still remains unavailable. Here, we demonstrate a concept of orbital split induced level engineering through sacrificial impurity coupling and the realization of efficient n-type transport in 2D h-BN monolayer. We find that the O 2p<sub>z</sub> orbital has both symmet  ...[more]

Similar Datasets

| S-EPMC4855177 | biostudies-other
| S-EPMC9999343 | biostudies-literature
| S-EPMC3564689 | biostudies-literature
| S-EPMC7570332 | biostudies-literature
| S-EPMC5249180 | biostudies-literature
| S-EPMC7586403 | biostudies-literature
| S-EPMC7829971 | biostudies-literature
| S-EPMC7060069 | biostudies-literature
| S-EPMC8040095 | biostudies-literature
| S-EPMC6761185 | biostudies-literature