Unknown

Dataset Information

0

A functionally conserved STORR gene fusion in Papaver species that diverged 16.8 million years ago.


ABSTRACT: The STORR gene fusion event is considered essential for the evolution of the promorphinan/morphinan subclass of benzylisoquinoline alkaloids (BIAs) in opium poppy as the resulting bi-modular protein performs the isomerization of (S)- to (R)-reticuline essential for their biosynthesis. Here, we show that of the 12 Papaver species analysed those containing the STORR gene fusion also contain promorphinans/morphinans with one important exception. P. californicum encodes a functionally conserved STORR but does not produce promorphinans/morphinans. We also show that the gene fusion event occurred only once, between 16.8-24.1 million years ago before the separation of P. californicum from other Clade 2 Papaver species. The most abundant BIA in P. californicum is (R)-glaucine, a member of the aporphine subclass of BIAs, raising the possibility that STORR, once evolved, contributes to the biosynthesis of more than just the promorphinan/morphinan subclass of BIAs in the Papaveraceae.

SUBMITTER: Catania T 

PROVIDER: S-EPMC9174169 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5814403 | biostudies-literature
| S-EPMC4763753 | biostudies-other
| S-EPMC7791053 | biostudies-literature
| S-EPMC7333908 | biostudies-literature
| S-EPMC7380090 | biostudies-literature
| S-EPMC3902484 | biostudies-literature
| S-EPMC6007157 | biostudies-literature
| S-EPMC4830954 | biostudies-literature
| S-EPMC4460481 | biostudies-literature
| S-EPMC9254029 | biostudies-literature