Ontology highlight
ABSTRACT: Objectives
We have previously demonstrated beneficial cardiac protection with hypothermic polarizing cardioplegia compared to a hyperkalemic depolarizing cardioplegia. In this study, a porcine model of cardiopulmonary bypass was used to compare the protective effects of normothermic blood-based polarizing and depolarizing cardioplegia during cardiac arrest.Methods
Thirteen pigs were randomized to receive either normothermic polarizing (n = 8) or depolarizing (n = 5) blood-based cardioplegia. After initiation of cardiopulmonary bypass, normothermic arrest (34°C, 60 min) was followed by 60 min of on-pump and 90 min of off-pump reperfusion. Primary outcome was myocardial injury measured as arterial myocardial creatine kinase concentration. Secondary outcome was haemodynamic function and the energy state of the hearts.Results
During reperfusion, release of myocardial creatine kinase was comparable between groups (P = 0.36). In addition, most haemodynamic parameters showed comparable results between groups, but stroke volume (P = 0.03) was significantly lower in the polarizing group. Adenosine triphosphate levels were significantly (18.41 ± 3.86 vs 22.97 ± 2.73 nmol/mg; P = 0.03) lower in polarizing hearts, and the requirement for noradrenaline administration (P = 0.002) and temporary pacing (6 vs 0; P = 0.02) during reperfusion were significantly higher in polarizing hearts.Conclusions
Under normothermic conditions, polarizing blood cardioplegia was associated with similar myocardial injury to depolarizing blood cardioplegia. Reduced haemodynamic and metabolic outcome and a higher need for temporary pacing with polarized arrest may be associated with the blood-based dilution of this solution.
SUBMITTER: Kramer AM
PROVIDER: S-EPMC9199933 | biostudies-literature | 2022 Jun
REPOSITORIES: biostudies-literature
Kramer Anne-Margarethe AM Kiss Attila A Heber Stefan S Chambers David J DJ Hallström Seth S Pilz Patrick M PM Podesser Bruno K BK Santer David D
Interactive cardiovascular and thoracic surgery 20220601 1
<h4>Objectives</h4>We have previously demonstrated beneficial cardiac protection with hypothermic polarizing cardioplegia compared to a hyperkalemic depolarizing cardioplegia. In this study, a porcine model of cardiopulmonary bypass was used to compare the protective effects of normothermic blood-based polarizing and depolarizing cardioplegia during cardiac arrest.<h4>Methods</h4>Thirteen pigs were randomized to receive either normothermic polarizing (n = 8) or depolarizing (n = 5) blood-based c ...[more]