Project description:At the core of the healthcare crisis is fundamental lack of actionable data. Such data could stratify individuals within populations to predict which persons have which outcomes. If baselines existed for all variations of all conditions, then managing health could be improved by matching the measuring of individuals to their cohort in the population. The scale required for complete baselines involves effective National Surveys of Population Health (NSPH). Traditionally, these have been focused upon acute medicine, measuring people to contain the spread of epidemics. In recent decades, the focus has moved to chronic conditions as well, which require smaller measures over longer times. NSPH have long utilized quality of life questionnaires. Mobile Health Monitors, where computing technologies eliminate manual administration, provide richer data sets for health measurement. Older technologies of telephone interviews will be replaced by newer technologies of smartphone sensors to provide deeper individual measures at more frequent timings across larger-sized populations. Such continuous data can provide personal health records, supporting treatment guidelines specialized for population cohorts. Evidence-based medicine will become feasible by leveraging hundreds of millions of persons carrying mobile devices interacting with Internet-scale services for Big Data Analytics.
Project description:ObjectiveMuch has been invested in big data analytics to improve health and reduce costs. However, it is unknown whether these investments have achieved the desired goals. We performed a scoping review to determine the health and economic impact of big data analytics for clinical decision-making.Materials and methodsWe searched Medline, Embase, Web of Science and the National Health Services Economic Evaluations Database for relevant articles. We included peer-reviewed papers that report the health economic impact of analytics that assist clinical decision-making. We extracted the economic methods and estimated impact and also assessed the quality of the methods used. In addition, we estimated how many studies assessed "big data analytics" based on a broad definition of this term.ResultsThe search yielded 12 133 papers but only 71 studies fulfilled all eligibility criteria. Only a few papers were full economic evaluations; many were performed during development. Papers frequently reported savings for healthcare payers but only 20% also included costs of analytics. Twenty studies examined "big data analytics" and only 7 reported both cost-savings and better outcomes.DiscussionThe promised potential of big data is not yet reflected in the literature, partly since only a few full and properly performed economic evaluations have been published. This and the lack of a clear definition of "big data" limit policy makers and healthcare professionals from determining which big data initiatives are worth implementing.
Project description:Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches.
Project description:BackgroundComplications due to type 2 diabetes (T2D) can be mitigated through proper self-management that can positively change health behaviors. Technological tools are available to help people living with, or at risk of developing, T2D to manage their condition, and such tools provide a large repository of patient-generated health data (PGHD). Analytics can provide insights into the health behaviors of people living with T2D.ObjectiveThe aim of this review is to investigate what can be learned about the health behaviors of those living with, or at risk of developing, T2D through analytics from PGHD.MethodsA scoping review using the Arksey and O'Malley framework was conducted in which a comprehensive search of the literature was conducted by 2 reviewers. In all, 3 electronic databases (PubMed, IEEE Xplore, and ACM Digital Library) were searched using keywords associated with diabetes, behaviors, and analytics. Several rounds of screening using predetermined inclusion and exclusion criteria were conducted, after which studies were selected. Critical examination took place through a descriptive-analytical narrative method, and data extracted from the studies were classified into thematic categories. These categories reflect the findings of this study as per our objective.ResultsWe identified 43 studies that met the inclusion criteria for this review. Although 70% (30/43) of the studies examined PGHD independently, 30% (13/43) combined PGHD with other data sources. Most of these studies used machine learning algorithms to perform their analysis. The themes identified through this review include predicting diabetes or obesity, deriving factors that contribute to diabetes or obesity, obtaining insights from social media or web-based forums, predicting glycemia, improving adherence and outcomes, analyzing sedentary behaviors, deriving behavior patterns, discovering clinical correlations from behaviors, and developing design principles.ConclusionsThe increased volume and availability of PGHD have the potential to derive analytical insights into the health behaviors of people living with T2D. From the literature, we determined that analytics can predict outcomes and identify granular behavior patterns from PGHD. This review determined the broad range of insights that can be examined through PGHD, which constitutes a unique source of data for these applications that would not be possible through the use of other data sources.
Project description:Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations.
Project description:Genomic medicine attempts to build individualized strategies for diagnostic or therapeutic decision-making by utilizing patients' genomic information. Big Data analytics uncovers hidden patterns, unknown correlations, and other insights through examining large-scale various data sets. While integration and manipulation of diverse genomic data and comprehensive electronic health records (EHRs) on a Big Data infrastructure exhibit challenges, they also provide a feasible opportunity to develop an efficient and effective approach to identify clinically actionable genetic variants for individualized diagnosis and therapy. In this paper, we review the challenges of manipulating large-scale next-generation sequencing (NGS) data and diverse clinical data derived from the EHRs for genomic medicine. We introduce possible solutions for different challenges in manipulating, managing, and analyzing genomic and clinical data to implement genomic medicine. Additionally, we also present a practical Big Data toolset for identifying clinically actionable genetic variants using high-throughput NGS data and EHRs.
Project description:Nowadays, big data are everywhere. Examples of big data include weather data, web-search data, disease reports, as well as epidemic data and statistics. These big data can be easily generated and collected from a wide variety of data sources. A data science framework—such as predictive analytics framework—helps mining data from various big data sources to find useful information and discover knowledge, which can then be transformed into wisdom for appropriate actions. In this paper, we present an innovative big data predictive analytics framework over hybrid big data sources. To demonstrate the effectiveness and practicality of our framework, we conduct several case studies, including one on applying the framework to disease analytics. More specifically, we integrate, incorporate and analyze weather data and web-search data to predict and forecast dengue cases based on a hybrid of three kernels in support vector machine (SVM) ensemble. Results show how our predictive analytics framework benefits health agencies in disease control and prevention.
Project description:ObjectivesGlobally, patients with osteoporosis have unmet needs in terms of care accessibility, patient-centredness and care comprehensiveness. The WHO developed the Integrated, People-Centred Health Services (IPCHS) framework to reorient and integrate healthcare systems using 5 interdependent strategies and 20 substrategies. Patients' perspectives with regard to these strategies are poorly understood. We sought to relate patient-experienced gaps in osteoporosis care to the IPCHS strategies and identify key strategies to guide osteoporosis care reforms.Design, setting and participantsQualitative online study of the experiences of international patients with osteoporosis.ProcedureTwo researchers conducted semi-structured interviews in English, Dutch, Spanish and French that were recorded and transcribed verbatim. Patients were categorised according to their countries' healthcare systems (universal, public/private and private) and fracture status. A hybrid (sequential theory-driven and data-driven) analysis was performed, with the IPCHS framework used for the theory-driven analysis.ResultsThirty-five patients (33 women) from 14 countries participated. Twenty-two patients had universal healthcare and 18 had experienced fragility fractures. Prioritised substrategies overlapped among healthcare systems, with reported shortcomings related primarily to 'empowering and engaging individuals and families' and 'coordinating care' (at varying levels). Patients with all healthcare types prioritised 'reorienting care', with different substrategies prioritised. Patients with private healthcare called for 'improving funding and reforming payment systems'. Substrategy prioritisation did not differ between those receiving primary and secondary fracture prevention.ConclusionPatients' experiences with osteoporosis care are universal. Given the current care gaps and associated patient burdens, policymakers should make osteoporosis a(n) (inter)national health priority. Integrated osteoporosis care reforms should focus on patient-reported experiences with and be guided by priorities in IPCHS strategies, taking into account the healthcare system context.
Project description:BACKGROUND:The treatment of multimorbid patients is one crucial task in general practice as multimorbidity is highly prevalent in this setting. However, there is little evidence how to treat these patients and consequently there are but a few guidelines that focus primarily on multimorbidity. Big data analytics are defined as a method that obtains results for high volume data with high variety generated at high velocity. Yet, the explanatory power of these results is not completely understood. Nevertheless, addressing multimorbidity as a complex condition might be a promising field for big data analytics. The aim of this scoping review was to evaluate whether applying big data analytics on patient data does already contribute to the treatment of multimorbid patients in general practice. METHODS:In January 2018, a review searching the databases PubMed, The Cochrane Library, and Web of Science, using defined search terms for "big data analytics" and "multimorbidity", supplemented by a search of grey literature with Google Scholar, was conducted. Studies were not filtered by type of study, publication year or language. Validity of studies was evaluated independently by two researchers. RESULTS:In total, 2392 records were identified for screening. After title and abstract screening, six articles were included in the full-text analysis. Of those articles, one reported on a model generated with big data techniques to help caring for one group of multimorbid patients. The other five articles dealt with the analysis of multimorbidity clusters. No article defined big data analytics explicitly. CONCLUSIONS:Although the usage of the phrase "Big Data" is growing rapidly, there is nearly no practical use case for big data analysis techniques in the treatment of multimorbidity in general practice yet. Furthermore, in publications addressing big data analytics, the term is rarely defined. However, possible models and algorithms to address multimorbidity in the future are already published.
Project description:The UK Biobank is a rich national health resource that provides enormous opportunities for international researchers to examine, model, and analyze census-like multisource healthcare data. The archive presents several challenges related to aggregation and harmonization of complex data elements, feature heterogeneity and salience, and health analytics. Using 7,614 imaging, clinical, and phenotypic features of 9,914 subjects we performed deep computed phenotyping using unsupervised clustering and derived two distinct sub-cohorts. Using parametric and nonparametric tests, we determined the top 20 most salient features contributing to the cluster separation. Our approach generated decision rules to predict the presence and progression of depression or other mental illnesses by jointly representing and modeling the significant clinical and demographic variables along with the derived salient neuroimaging features. We reported consistency and reliability measures of the derived computed phenotypes and the top salient imaging biomarkers that contributed to the unsupervised clustering. This clinical decision support system identified and utilized holistically the most critical biomarkers for predicting mental health, e.g., depression. External validation of this technique on different populations may lead to reducing healthcare expenses and improving the processes of diagnosis, forecasting, and tracking of normal and pathological aging.