Project description:Neural progenitor cells (NPCs) of the subventricular zone proliferate in response to ischemic stroke in the adult mouse brain. Newly generated cells have been considered to influence recovery following a stroke. However, the mechanism underlying such protection is a matter of active study since it has been thought that proliferating NPCs mediate their protective effects by secreting soluble factors that promote recovery rather than neuronal replacement in the ischemic penumbra. We tested the hypothesis that this mechanism is mediated by the secretion of multimolecular complexes in extracellular vesicles (EVs). We found that the molecular influence of oxygen and glucose-deprived (OGD) NPCs-derived EVs is very limited in improving overt neurological alterations caused by stroke compared to our recently reported astrocyte-derived EVs. However, when we inhibited the ischemia-triggered proliferation of NPCs with the chronic administration of the DNA synthesis inhibitor Ara-C, the effect of NPC-derived EVs became evident, suggesting that the endogenous protection exerted by the proliferation of NPC is mainly carried out through a mechanism that involves the intercellular communication mediated by EVs. We analyzed the proteomic content of NPC-derived EVs cargo with label-free relative abundance mass spectrometry and identified several molecular mediators of neuronal recovery within these vesicles. Our findings indicate that NPC-derived EVs are protective against the ischemic cascade activated by stroke and, thus, hold significant therapeutic potential.
Project description:Proposed model for the anti-apoptotic effects of induced neural stem/progenitor cell (iNPC)-derived extracellular vesicles (EVs). iNPC release EVs that are abundantly loaded with growth factor-related proteins. These growth factor-enriched EVs enhance the phosphorylation of extracellular signal-regulated kinase (ERK), but not AKt. The EV-induced activation of ERK pathway then inhibit the apoptosis of NPCs in various pathological conditions including oxidative stress and starvation.
Project description:BackgroundEmbryonic stem cell-derived extracellular vesicles (ESC-EVs) possess therapeutic potential for a variety of diseases and are considered as an alternative of ES cells. Acute kidney injury (AKI) is a common acute and severe disease in clinical practice, which seriously threatens human life and health. However, the roles and mechanisms of ESC-EVs on AKI remain unclear.MethodsIn this study, we evaluated the effects of ESC-EVs on physiological repair and pathological repair using murine ischemia-reperfusion injury-induced AKI model, the potential mechanisms of which were next investigated. EVs were isolated from ESCs and EVs derived from mouse fibroblasts as therapeutic controls. We then investigated whether ESC-EVs can restore the structure and function of the damaged kidney by promoting physiological repair and inhibiting the pathological repair process after AKI in vivo and in vitro.ResultsWe found that ESC-EVs significantly promoted the recovery of the structure and function of the damaged kidney. ESC-EVs increased the proliferation of renal tubular epithelial cells, facilitated renal angiogenesis, inhibited the progression of renal fibrosis, and rescued DNA damage caused by ischemia and reperfusion after AKI. Finally, we found that ESC-EVs play a therapeutic effect by activating Sox9+ cells.ConclusionsESC-EVs significantly promote the physiological repair and inhibit the pathological repair after AKI, enabling restoration of the structure and function of the damaged kidney. This strategy might emerge as a novel therapeutic strategy for ESC clinical application.
Project description:Stem cells such as mesenchymal stem cells (MSCs) enhance neurological recovery in preclinical stroke models by secreting extracellular vesicles (EVs). Since previous reports have focused on the application of MSC-EVs only, the role of the most suitable host cell for EV enrichment and preclinical stroke treatment remains elusive. The present study aimed to evaluate the therapeutic potential of EVs derived from neural progenitor cells (NPCs) following experimental stroke. Using the PEG technique, EVs were enriched and characterized by electron microscopy, proteomics, rt-PCR, nanosight tracking analysis, and Western blotting. Different dosages of NPC-EVs displaying a characteristic profile in size, shape, cargo protein, and non-coding RNA contents were incubated in the presence of cerebral organoids exposed to oxygen-glucose deprivation (OGD), significantly reducing cell injury when compared with control organoids. Systemic administration of NPC-EVs in male C57BL6 mice following experimental ischemia enhanced neurological recovery and neuroregeneration for as long as 3 months. Interestingly, the therapeutic impact of such NPC-EVs was found to be not inferior to MSC-EVs. Flow cytometric analyses of blood and brain samples 7 days post-stroke demonstrated increased blood concentrations of B and T lymphocytes after NPC-EV delivery, without affecting cerebral cell counts. Likewise, a biodistribution analysis after systemic delivery of NPC-EVs revealed the majority of NPC-EVs to be found in extracranial organs such as the liver and the lung. This proof-of-concept study supports the idea of EVs being a general concept of stem cell-induced neuroprotection under stroke conditions, where EVs contribute to reverting the peripheral post-stroke immunosuppression.
Project description:BACKGROUND AND PURPOSE:Recent work from our group suggests that human neural stem cell-derived extracellular vesicle (NSC EV) treatment improves both tissue and sensorimotor function in a preclinical thromboembolic mouse model of stroke. In this study, NSC EVs were evaluated in a pig ischemic stroke model, where clinically relevant end points were used to assess recovery in a more translational large animal model. METHODS:Ischemic stroke was induced by permanent middle cerebral artery occlusion (MCAO), and either NSC EV or PBS treatment was administered intravenously at 2, 14, and 24 hours post-MCAO. NSC EV effects on tissue level recovery were evaluated via magnetic resonance imaging at 1 and 84 days post-MCAO. Effects on functional recovery were also assessed through longitudinal behavior and gait analysis testing. RESULTS:NSC EV treatment was neuroprotective and led to significant improvements at the tissue and functional levels in stroked pigs. NSC EV treatment eliminated intracranial hemorrhage in ischemic lesions in NSC EV pigs (0 of 7) versus control pigs (7 of 8). NSC EV-treated pigs exhibited a significant decrease in cerebral lesion volume and decreased brain swelling relative to control pigs 1-day post-MCAO. NSC EVs significantly reduced edema in treated pigs relative to control pigs, as assessed by improved diffusivity through apparent diffusion coefficient maps. NSC EVs preserved white matter integrity with increased corpus callosum fractional anisotropy values 84 days post-MCAO. Behavior and mobility improvements paralleled structural changes as NSC EV-treated pigs exhibited improved outcomes, including increased exploratory behavior and faster restoration of spatiotemporal gait parameters. CONCLUSIONS:This study demonstrated for the first time that in a large animal model novel NSC EVs significantly improved neural tissue preservation and functional levels post-MCAO, suggesting NSC EVs may be a paradigm changing stroke therapeutic.
Project description:BackgroundGlioblastomas are lethal brain tumors under the current combinatorial therapeutic strategy that includes surgery, chemo- and radio-therapies. Extensive changes in the tumor microenvironment is a key reason for resistance to chemo- or radio-therapy and frequent tumor recurrences. Understanding the tumor-nontumor cell interaction in TME is critical for developing new therapy. Glioblastomas are known to recruit normal cells in their environs to sustain growth and encroachment into other regions. Neural progenitor cells (NPCs) have been noted to migrate towards the site of glioblastomas, however, the detailed mechanisms underlying glioblastoma-mediated NPCs' alteration remain unkown.MethodsWe collected EVs in the culture medium of three classic glioblastoma cell lines, U87 and A172 (male cell lines), and LN229 (female cell line). U87, A172, and LN229 were co-cultured with their corresponding EVs, respectively. Mouse NPCs (mNPCs) were co-cultured with glioblastoma-derived EVs. The proliferation and migration of tumor cells and mNPCs after EVs treatment were examined. Proteomic analysis and western blotting were utilized to identify the underlying mechanisms of glioblastoma-derived EVs-induced alterations in mNPCs.ResultsWe first show that glioblastoma cell lines U87-, A172-, and LN229-derived EVs were essential for glioblastoma cell prolifeartion and migration. We then demonstrated that glioblastoma-derived EVs dramatically promoted NPC proliferation and migration. Mechanistic studies identify that glioblastoma-derived EVs achieve their functions via activating PI3K-Akt-mTOR pathway in mNPCs. Inhibiting PI3K-Akt pathway reversed the elevated prolfieration and migration of glioblastoma-derived EVs-treated mNPCs.ConclusionOur findings demonstrate that EVs play a key role in intercellular communication in tumor microenvironment. Inhibition of the tumorgenic EVs-mediated PI3K-Akt-mTOR pathway activation might be a novel strategy to shed light on glioblastoma therapy. Video Abstract.
Project description:BACKGROUND:Mesenchymal stem cell-derived extracellular vesicles (EVs) are one of the most promising therapeutics in protective and/or regenerative therapy in animal models of stroke using a dose of 100??g. However, whether EVs dose is related to outcomes is not known. This study aimed to identify the optimal effective dose of EVs from adipose tissue-derived mesenchymal stem cells that promote functional recovery in subcortical stroke. MATERIALS AND METHODS:For this purpose, various doses of EVs were tested in an in vitro oxygen-glucose deprivation (OGD) model of oligodendrocytes and neuronal ischemia. At least 50??g of EVs were necessary to induce proliferation and differentiation of oligodendrocyte and neurons in OGD conditions. For in vivo study, rats were subjected to subcortical stroke and various doses (50??g, 100??g, or 200??g) of EVs were intravenously administered after 24?h. RESULTS:All the animals in the EV groups showed significant improvement in functional tests, with an increase in tract connectivity and brain repair-associated markers, and a decrease in cell death and in astrocyte-marker expression. Cell proliferation was increased in the groups receiving 50??g and 100??g doses. Only the 50-?g dose was associated with significant increases in brain-derived neurotrophic factor expression. CONCLUSION:In conclusion, 50??g of EVs appears to be the minimal effective dose to enhance protection, brain repair, and recovery in subcortical ischemic stroke.
Project description:Over 700 drugs have failed in stroke clinical trials, an unprecedented rate thought to be attributed in part to limited and isolated testing often solely in "young" rodent models and focusing on a single secondary injury mechanism. Here, extracellular vesicles (EVs), nanometer-sized cell signaling particles, were tested in a mouse thromboembolic (TE) stroke model. Neural stem cell (NSC) and mesenchymal stem cell (MSC) EVs derived from the same pluripotent stem cell (PSC) line were evaluated for changes in infarct volume as well as sensorimotor function. NSC EVs improved cellular, tissue, and functional outcomes in middle-aged rodents, whereas MSC EVs were less effective. Acute differences in lesion volume following NSC EV treatment were corroborated by MRI in 18-month-old aged rodents. NSC EV treatment has a positive effect on motor function in the aged rodent as indicated by beam walk, instances of foot faults, and strength evaluated by hanging wire test. Increased time with a novel object also indicated that NSC EVs improved episodic memory formation in the rodent. The therapeutic effect of NSC EVs appears to be mediated by altering the systemic immune response. These data strongly support further preclinical development of a NSC EV-based stroke therapy and warrant their testing in combination with FDA-approved stroke therapies.
Project description:Neural stem/progenitor cells (NPCs) are known to have potent therapeutic effects in neurological disorders through the secretion of extracellular vesicles (EVs). Despite the therapeutic potentials, the numbers of NPCs are limited in the brain, curbing the further use of EVs in the disease treatment. To overcome the limitation of NPC numbers, we used a three transcription factor (Brn2, Sox2, and Foxg1) somatic reprogramming approach to generate induced NPCs (iNPCs) from mouse fibroblasts and astrocytes. The resulting iNPCs released significantly higher numbers of EVs compared with wild-type NPCs (WT-NPCs). Furthermore, iNPCs-derived EVs (iNPC-EVs) promoted NPC function by increasing the proliferative potentials of WT-NPCs. Characterizations of EV contents through proteomics analysis revealed that iNPC-EVs contained higher levels of growth factor-associated proteins that were predicted to activate the down-stream extracellular signal-regulated kinase (ERK) pathways. As expected, the proliferative effects of iNPC-derived EVs on WT-NPCs can be blocked by an ERK pathway inhibitor. Our data suggest potent therapeutic effects of iNPC-derived EVs through the promotion of NPC proliferation, release of growth factors, and activation of ERK pathways. These studies will help develop highly efficient cell-free therapeutic strategies for the treatment of neurological diseases.
Project description:Disseminated breast cancer cells have the capacity to metastasise to the bone marrow and reside in a dormant state within the mesenchymal stem cell niche. Research has focussed on paracrine signalling factors, such as soluble proteins, within the microenvironment. However, it is now clear extracellular vesicles secreted by resident mesenchymal stem cells into this microenvironment also play a key role in the initiation of dormancy. Dormancy encourages reduced cell proliferation and migration, while upregulating cell adhesion, thus retaining the cancer cells within the bone marrow microenvironment. Here, MCF7 breast cancer cells were treated with mesenchymal stem cell-derived extracellular vesicles, resulting in reduced migration in two-dimensional and three-dimensional culture, with reduced cell proliferation and enhanced adhesion, collectively supporting cancer cell dormancy.