Unknown

Dataset Information

0

Formula Graph Self-Attention Network for Representation-Domain Independent Materials Discovery.


ABSTRACT: The success of machine learning (ML) in materials property prediction depends heavily on how the materials are represented for learning. Two dominant families of material descriptors exist, one that encodes crystal structure in the representation and the other that only uses stoichiometric information with the hope of discovering new materials. Graph neural networks (GNNs) in particular have excelled in predicting material properties within chemical accuracy. However, current GNNs are limited to only one of the above two avenues owing to the little overlap between respective material representations. Here, a new concept of formula graph which unifies stoichiometry-only and structure-based material descriptors is introduced. A self-attention integrated GNN that assimilates a formula graph is further developed and it is found that the proposed architecture produces material embeddings transferable between the two domains. The proposed model can outperform some previously reported structure-agnostic models and their structure-based counterparts while exhibiting better sample efficiency and faster convergence. Finally, the model is applied in a challenging exemplar to predict the complex dielectric function of materials and nominate new substances that potentially exhibit epsilon-near-zero phenomena.

SUBMITTER: Ihalage A 

PROVIDER: S-EPMC9218748 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6494829 | biostudies-other
| S-EPMC8513790 | biostudies-literature
| S-EPMC5338233 | biostudies-literature
| S-EPMC8455698 | biostudies-literature
| S-EPMC9897180 | biostudies-literature
| S-EPMC9750103 | biostudies-literature
| S-EPMC8769035 | biostudies-literature
| S-EPMC7888189 | biostudies-literature
| S-EPMC10141246 | biostudies-literature
| S-EPMC9234322 | biostudies-literature