Ontology highlight
ABSTRACT: Motivation
Protein functions are often described using the Gene Ontology (GO) which is an ontology consisting of over 50 000 classes and a large set of formal axioms. Predicting the functions of proteins is one of the key challenges in computational biology and a variety of machine learning methods have been developed for this purpose. However, these methods usually require a significant amount of training data and cannot make predictions for GO classes that have only few or no experimental annotations.Results
We developed DeepGOZero, a machine learning model which improves predictions for functions with no or only a small number of annotations. To achieve this goal, we rely on a model-theoretic approach for learning ontology embeddings and combine it with neural networks for protein function prediction. DeepGOZero can exploit formal axioms in the GO to make zero-shot predictions, i.e., predict protein functions even if not a single protein in the training phase was associated with that function. Furthermore, the zero-shot prediction method employed by DeepGOZero is generic and can be applied whenever associations with ontology classes need to be predicted.Availability and implementation
http://github.com/bio-ontology-research-group/deepgozero.Supplementary information
Supplementary data are available at Bioinformatics online.
SUBMITTER: Kulmanov M
PROVIDER: S-EPMC9235501 | biostudies-literature |
REPOSITORIES: biostudies-literature