Project description:BackgroundDue to the potential consequences of post-traumatic epilepsy (PTE) exacerbating secondary injury following traumatic brain injury (TBI), the use of antiepileptic drugs (AEDs) is an accepted option for seizure prophylaxis. However, there is only a paucity of data that can be found regarding outcomes surrounding the use of AEDs. The purpose of this retrospective study is to evaluate whether the prophylactic administration of AEDs significantly decreased the incidence of PTE, when considering the severity of TBI.MethodsAll trauma patients who had been newly diagnosed with TBI from January 1, 2010 to December 31, 2017 were retrospectively analyzed. Statistical comparisons were made using the chi-square test, Mann-Whitney U test, and Cox regression modeling. After excluding any exposed subjects with no appropriate match, patients who had received AED prophylaxis were matched by propensity score with those who did not receive AEDs. All of the TBI populations were followed up until June 30, 2018.ResultsWe identified 1316 patients who met the inclusion and exclusion criteria in our matched cohort through their propensity scores, where 138 patients had been receiving prophylactic AEDs and 138 patients had not. Baseline characteristics were similar in gender, age, Glasgow Coma Scale (GCS) scores, and risk factors of PTE including skull fracture, chronic alcoholism, subdural hematoma, epidural hematoma, and intracerebral hematoma. After adjusting for those risk factors, the relative incidence of seizure was not statistically significant in either of the groups (p = 0.566).ConclusionIn our cohort analysis, AED prophylaxis was ineffective in preventing seizures, as the rate of seizures was similar whether patients had been receiving the drugs or not. We therefore concluded that the benefits of routine prophylactic anticonvulsant therapy in patients with TBI need to be re-evaluated.
Project description:IntroductionPost-traumatic epilepsy (PTE) is a recognised complication of traumatic brain injury (TBI), and is associated with higher rates of mortality and morbidity when compared with patients with TBI who do not develop PTE. The majority of the literature on PTE has focused on adult populations, and consequently there is a paucity of information regarding paediatric cohorts. Additionally, there is considerable heterogeneity surrounding the reported incidence of PTE following childhood TBI in the current literature. The primary aim of our study is to summarise reported PTE incidences in paediatric populations to derive an accurate estimate of the global incidence of PTE following childhood TBI. Our secondary aim is to explore risk factors that increase the likelihood of developing PTE.Methods and analysisA systematic literature search of Embase (1947-2021), PubMed (1996-2021) and Web of Science (1900-2021) will be conducted. Publications in English that report the incidence of PTE in populations under 18 years of age will be included. Publications that evaluate fewer than 10 patients, report an alternative cause of epilepsy, or in which a paediatric cohort is not discernable, will be excluded. Independent investigators will identify the relevant publications, and discrepancies will be adjudicated by a third independent investigator. Data extracted will include incidence of PTE, time intervals between TBI and PTE, seizure characteristics, injury characteristics, patient demographics and clinical data. Data extraction will be performed by two independent investigators and cross-checked by a third investigator. A descriptive analysis of PTE incidence will be conducted and a weighted mean will be calculated. If sufficient data are available, stratified meta-analysis of subgroups will also be conducted.Ethics and disseminationEthics approval was not required for this study. We intend to publish our findings in a high-quality peer-reviewed journal on completion.Prospero registration numberCRD42021245802.
Project description:Currently available epilepsy drugs only affect the symptoms (seizures), and there is a need for innovative treatments that target the underlying disease. Increasing evidence points to inflammation as a potentially important mechanism in epileptogenesis. In the last decade, a new generation of etiologically realistic syndrome-specific experimental models have been developed, which are expected to capture the epileptogenic mechanisms operating in corresponding patient populations, and to exhibit similar treatment responsiveness. Recently, an intervention known to have broad-ranging anti-inflammatory effects (selective brain cooling) has been found to prevent the development of spontaneously occurring seizures in an etiologically realistic rat model of post-traumatic epilepsy. Several drugs used clinically for other indications also have the potential for inhibiting inflammation, and should be investigated for antiepileptogenic activity in these models. If results of such studies are positive, these compounds could rapidly enter Phase III trials in patients at high risk of developing epilepsy.
Project description:Agitation is common in the early recovery period following traumatic brain injury (TBI), known as post-traumatic amnesia (PTA). Non-pharmacological interventions are frequently used to manage agitation, yet their efficacy is largely unknown. This systematic review aims to synthesize current evidence on the effectiveness of non-pharmacological interventions for agitation during PTA in adults with TBI. Key databases searched included MEDLINE Ovid SP interface, PubMed, CINAHL, Excerpta Medica Database, PsycINFO and CENTRAL, with additional online reviewing of key journals and clinical trial registries to identify published or unpublished studies up to May 2020. Eligible studies included participants aged 16 years and older, showing agitated behaviours during PTA. Any non-pharmacological interventions for reducing agitation were considered, with any comparator accepted. Eligible studies were critically appraised for methodological quality using Joanna Briggs Institute Critical Appraisal Instruments and findings were reported in narrative form. Twelve studies were included in the review: two randomized cross-over trials, three quasi-experimental studies, four cases series and three case reports. Non-pharmacological interventions were music therapy, behavioural strategies and environmental modifications, physical restraints and electroconvulsive therapy. Key methodological concerns included absence of a control group, a lack of formalised agitation measurement and inconsistent concomitant use of pharmacology. Interventions involving music therapy had the highest level of evidence, although study quality was generally low to moderate. Further research is needed to evaluate non-pharmacological interventions for reducing agitation during PTA after TBI.Systematic review registration number: PROSPERO (CRD42020186802), registered May 2020.
Project description:Post-traumatic neuroinflammation is a key driver of secondary injury after traumatic brain injury (TBI). Pyroptosis, a proinflammatory form of programmed cell death, considerably activates strong neuroinflammation and amplifies the inflammatory response by releasing inflammatory contents. Therefore, treatments targeting pyroptosis may beneficially effects for the treatment of secondary brain damage after TBI. Herein, a cysteine-alanine-glutamine-lysine (CAQK) peptide-modified β-lactoglobulin (β-LG) nanoparticle was constructed to deliver disulfiram (DSF), C-β-LG/DSF, to inhibit pyroptosis and decrease neuroinflammation, thereby preventing TBI-induced secondary injury. In the post-TBI mice model, C-β-LG/DSF selectively targets the injured brain, increases DSF accumulation, and extends the time of the systemic circulation of DSF. C-β-LG/DSF can alleviate brain edema and inflammatory response, inhibit secondary brain injury, promote learning, and improve memory recovery in mice after trauma. Therefore, this study likely provided a new approach for reducing the secondary spread of TBI.
Project description:Traumatic brain injury (TBI) remains a major cause of death and permanent disability worldwide, especially in children and young adults. A total of 1.5 million people experience head trauma each year in the United States, with an annual economic cost exceeding $56 billion. Unfortunately, almost all Phase III TBI clinical trials have yet to yield a safe and effective neuroprotective treatment, raising questions regarding the use of neuroprotective strategies as the primary therapy for acute brain injuries. Recent preclinical data suggest that neurorestorative strategies that promote angiogenesis (formation of new blood vessels from pre-existing endothelial cells), axonal remodeling (axonal sprouting and pruning), neurogenesis (generation of new neurons) and synaptogenesis (formation of new synapses) provide promising opportunities for the treatment of TBI. This review discusses select cell-based and pharmacological therapies that activate and amplify these endogenous restorative brain plasticity processes to promote both repair and regeneration of injured brain tissue and functional recovery after TBI.
Project description:BackgroundThis review summarizes promising approaches for the treatment of traumatic brain injury (TBI) that are in either preclinical or clinical trials.ObjectiveThe pathophysiology underlying neurological deficits after TBI is described. An overview of select therapies for TBI with neuroprotective and neurorestorative effects is presented.MethodsA literature review of preclinical TBI studies and clinical TBI trials related to neuroprotective and neurorestorative therapeutic approaches is provided.Results/conclusionNearly all Phase II/III clinical trials in neuroprotection have failed to show any consistent improvement in outcome for TBI patients. The next decade will witness an increasing number of clinical trials that seek to translate preclinical research discoveries to the clinic. Promising drug- or cell-based therapeutic approaches include erythropoietin and its carbamylated form, statins, bone marrow stromal cells, stem cells singularly or in combination or with biomaterials to reduce brain injury via neuroprotection and promote brain remodeling via angiogenesis, neurogenesis, and synaptogenesis with a final goal to improve functional outcome of TBI patients. In addition, enriched environment and voluntary physical exercise show promise in promoting functional outcome after TBI, and should be evaluated alone or in combination with other treatments as therapeutic approaches for TBI.
Project description:Recent animal experiments indicate a critical role for opening of the blood-brain barrier (BBB) in the pathogenesis of post-traumatic epilepsy (PTE). This study aimed to investigate the frequency, extent, and functional correlates of BBB disruption in epileptic patients following mild traumatic brain injury (TBI). Thirty-seven TBI patients were included in this study, 19 of whom suffered from PTE. All underwent electroencephalographic (EEG) recordings and brain magnetic resonance imaging (bMRI). bMRIs were evaluated for BBB disruption using novel quantitative techniques. Cortical dysfunction was localized using standardized low-resolution brain electromagnetic tomography (sLORETA). TBI patients displayed significant EEG slowing compared to controls with no significant differences between PTE and nonepileptic patients. BBB disruption was found in 82.4% of PTE compared to 25% of non-epileptic patients (P = .001) and could be observed even years following the trauma. The volume of cerebral cortex with BBB disruption was significantly larger in PTE patients (P = .001). Slow wave EEG activity was localized to the same region of BBB disruption in 70% of patients and correlated to the volume of BBB disrupted cortex. We finally present a patient suffering from early cortical dysfunction and BBB breakdown with a gradual and parallel resolution of both pathologies. Our findings demonstrate that BBB pathology is frequently found following mild TBI. Lasting BBB breakdown is found with increased frequency and extent in PTE patients. Based on recent animal studies and the colocalization found between the region of disrupted BBB and abnormal EEG activity, we suggest a role for a vascular lesion in the pathogenesis of PTE.
Project description:Post-traumatic epilepsy (PTE) is diagnosed in 20% of individuals with acquired epilepsy, and can impact significantly the quality of life due to the seizures and other functional or cognitive and behavioral outcomes of the traumatic brain injury (TBI) and PTE. There is no available antiepileptogenic or disease modifying treatment for PTE. Animal models of TBI and PTE have been developed, offering useful insights on the value of inflammatory, neurodegenerative pathways, hemorrhages and iron accumulation, calcium channels and other target pathways that could be used for treatment development. Most of the existing preclinical studies test efficacy towards pathologies of functional recovery after TBI, while a few studies are emerging testing the effects towards induced or spontaneous seizures. Here we review the existing preclinical trials testing new candidate treatments for TBI sequelae and PTE, and discuss future directions for efforts aiming at developing antiepileptogenic and disease-modifying treatments.
Project description:Post-traumatic epilepsy accounts for 10-20% of symptomatic epilepsy in the general population and 5% of all epilepsy. During the last decade, an increasing number of laboratories have investigated the molecular and cellular mechanisms of post-traumatic epileptogenesis in experimental models. However, identification of critical molecular, cellular, and network mechanisms that would be specific for post-traumatic epileptogenesis remains a challenge. Despite of that, 7 of 9 proof-of-concept antiepileptogenesis studies have demonstrated some effect on seizure susceptibility after experimental traumatic brain injury, even though none of them has progressed to clinic. Moreover, there has been some promise that new clinically translatable imaging approaches can identify biomarkers for post-traumatic epileptogenesis. Even though the progress in combating post-traumatic epileptogenesis happens in small steps, recent discoveries kindle hope for identification of treatment strategies to prevent post-traumatic epilepsy in at-risk patients.