Project description:Steller's sea cow, a giant sirenian discovered in 1741 and extinct by 1768, is one of the few megafaunal mammal species to have died out during the historical period. The species is traditionally considered to have been exterminated by 'blitzkrieg'-style direct overharvesting for food, but it has also been proposed that its extinction resulted from a sea urchin population explosion triggered by extirpation of local sea otter populations that eliminated the shallow-water kelps on which sea cows fed. Hunting records from eighteenth century Russian expeditions to the Commander Islands, in conjunction with life-history data extrapolated from dugongs, permit modelling of sea cow extinction dynamics. Sea cows were massively and wastefully overexploited, being hunted at over seven times the sustainable limit, and suggesting that the initial Bering Island sea cow population must have been higher than suggested by previous researchers to allow the species to survive even until 1768. Environmental changes caused by sea otter declines are unlikely to have contributed to this extinction event. This indicates that megafaunal extinctions can be effected by small bands of hunters using pre-industrial technologies, and highlights the catastrophic impact of wastefulness when overexploiting resources mistakenly perceived as 'infinite'.
Project description:To revisit and address four major unresolved issues regarding prehistory, especially the Neolithic history of Sherpas and Tibetans and their hypoxic adaptation: (i) whether they are two genetically different ethnic groups; (ii) whether population substructures exist in either of the two groups; (iii) how long they have diverged from their ancestral group and when the two separated groups started to re-contact by population admixture; and (iv) whether the two groups share major high-altitude adaptation mechanisms. The careful and systematical analysis of these newly sequenced genomes, together with available genotyping data can provide further insight into the genetic origins of Sherpas and Tibetans and uncover their different adaptive mechanisms.
Project description:The late Pleistocene extinction of so many large-bodied vertebrates has been variously attributed to two general causes: rapid climate change and the effects of humans as they spread from the Old World to previously uninhabited continents and islands. Many large-bodied vertebrates, especially large apex predators, maintain their associated ecosystems through top-down forcing processes, especially trophic cascades, and megaherbivores also exert an array of strong indirect effects on their communities. Thus, a third possibility for at least some of the Pleistocene extinctions is that they occurred through habitat changes resulting from the loss of these other keystone species. Here we explore the plausibility of this mechanism, using information on sea otters, kelp forests, and the recent extinction of Steller's sea cows from the Commander Islands. Large numbers of sea cows occurred in the Commander Islands at the time of their discovery by Europeans in 1741. Although extinction of these last remaining sea cows during early years of the Pacific maritime fur trade is widely thought to be a consequence of direct human overkill, we show that it is also a probable consequence of the loss of sea otters and the co-occurring loss of kelp, even if not a single sea cow had been killed directly by humans. This example supports the hypothesis that the directly caused extinctions of a few large vertebrates in the late Pleistocene may have resulted in the coextinction of numerous other species.
Project description:Steller's sea cow, an extinct sirenian and one of the largest Quaternary mammals, was described by Georg Steller in 1741 and eradicated by humans within 27 years. Here, we complement Steller's descriptions with paleogenomic data from 12 individuals. We identified convergent evolution between Steller's sea cow and cetaceans but not extant sirenians, suggesting a role of several genes in adaptation to cold aquatic (or marine) environments. Among these are inactivations of lipoxygenase genes, which in humans and mouse models cause ichthyosis, a skin disease characterized by a thick, hyperkeratotic epidermis that recapitulates Steller's sea cows' reportedly bark-like skin. We also found that Steller's sea cows' abundance was continuously declining for tens of thousands of years before their description, implying that environmental changes also contributed to their extinction.
Project description:Anthropogenic activity is the top factor directly related to the extinction of several animal species. The last Steller's sea cow (Hydrodamalis gigas) population on the Commander Islands (Russia) was wiped out in the second half of the 18th century due to sailors and fur traders hunting it for the meat and fat. However, new data suggests that the extinction process of this species began much earlier. Here, we present a nuclear de novo assembled genome of H. gigas with a 25.4× depth coverage. Our results demonstrate that the heterozygosity of the last population of this animal is low and comparable to the last woolly mammoth population that inhabited Wrangel Island 4000 years ago. Besides, as a matter of consideration, our findings also demonstrate that the extinction of this marine mammal starts along the North Pacific coastal line much earlier than the first Paleolithic humans arrived in the Bering sea region.
Project description:Better methods are required to interpret the pathogenicity of disease-associated variants of uncertain significance (VUS), which cannot be actioned clinically. In this study, we explore the use of an animal model (Caenorhabditis elegans) for in vivo interpretation of missense VUS alleles of TMEM67, a cilia gene associated with ciliopathies. CRISPR/Cas9 gene editing was used to generate homozygous knock-in C. elegans worm strains carrying TMEM67 patient variants engineered into the orthologous gene (mks-3). Quantitative phenotypic assays of sensory cilia structure and function (neuronal dye filling, roaming and chemotaxis assays) measured how the variants impacted mks-3 gene function. Effects of the variants on mks-3 function were further investigated by looking at MKS-3::GFP localization and cilia ultrastructure. The quantitative assays in C. elegans accurately distinguished between known benign (Asp359Glu, Thr360Ala) and known pathogenic (Glu361Ter, Gln376Pro) variants. Analysis of eight missense VUS generated evidence that three are benign (Cys173Arg, Thr176Ile and Gly979Arg) and five are pathogenic (Cys170Tyr, His782Arg, Gly786Glu, His790Arg and Ser961Tyr). Results from worms were validated by a genetic complementation assay in a human TMEM67 knock-out hTERT-RPE1 cell line that tests a TMEM67 signalling function. We conclude that efficient genome editing and quantitative functional assays in C. elegans make it a tractable in vivo animal model for rapid, cost-effective interpretation of ciliopathy-associated missense VUS alleles.
Project description:Communities in the Pamir Mountains of Central Asia are among the most vulnerable to climate change due to their geographic location and subsistence-based livelihoods. Historically, ecological calendars supported their agropastoral lifestyles which provided anticipatory capacity to seasonal changes. Due to decades of Soviet colonization and socioecological transformations, knowledge of these ecological calendars fell into disuse. In 2016, Savnob and Roshorv, two villages in the Bartang Valley of Tajikistan, began the revitalization of these calendars using a participatory action research process through knowledge co-generation. We undertook a comparative analysis to investigate the importance of context-specificity to ensure food security and reduce their vulnerability to climate change. A preliminary analysis of the temperature regime and local language terms, relating to the positioning and quality of land, framed our methods-of-analysis. We compared the villagers' ecological calendars by focusing on indicator species, potentially threatening weather events, land-use, livelihood activities, and the role of the vernal equinox. Despite their close geographic proximity, context-specificity determined by distinct microecologies influences the timing and practice of these communities' livelihood activities. These villages have different dependencies on biotic and abiotic events, crops, and land-use; all of which affect food security and survival. These differences contributed to mutual support between the two villages, increased the availability of food, and thereby, lowered their vulnerability to climate change. As Savnob's and Roshorv's ecological calendars are updated with changing climate, they can once again enhance their anticipatory capacity while reducing their vulnerability.
Project description:BACKGROUND:It is frequently of epidemiological and/or clinical interest to estimate the date of HIV infection or time-since-infection of individuals. Yet, for over 15?years, the only widely-referenced infection dating algorithm that utilises diagnostic testing data to estimate time-since-infection has been the 'Fiebig staging' system. This defines a number of stages of early HIV infection through various standard combinations of contemporaneous discordant diagnostic results using tests of different sensitivity. To develop a new, more nuanced infection dating algorithm, we generalised the Fiebig approach to accommodate positive and negative diagnostic results generated on the same or different dates, and arbitrary current or future tests - as long as the test sensitivity is known. For this purpose, test sensitivity is the probability of a positive result as a function of time since infection. METHODS:The present work outlines the analytical framework for infection date estimation using subject-level diagnostic testing histories, and data on test sensitivity. We introduce a publicly-available online HIV infection dating tool that implements this estimation method, bringing together 1) curatorship of HIV test performance data, and 2) infection date estimation functionality, to calculate plausible intervals within which infection likely became detectable for each individual. The midpoints of these intervals are interpreted as infection time 'point estimates' and referred to as Estimated Dates of Detectable Infection (EDDIs). The tool is designed for easy bulk processing of information (as may be appropriate for research studies) but can also be used for individual patients (such as in clinical practice). RESULTS:In many settings, including most research studies, detailed diagnostic testing data are routinely recorded, and can provide reasonably precise estimates of the timing of HIV infection. We present a simple logic to the interpretation of diagnostic testing histories into infection time estimates, either as a point estimate (EDDI) or an interval (earliest plausible to latest plausible dates of detectable infection), along with a publicly-accessible online tool that supports wide application of this logic. CONCLUSIONS:This tool, available at https://tools.incidence-estimation.org/idt/ , is readily updatable as test technology evolves, given the simple architecture of the system and its nature as an open source project.
Project description:BackgroundBretschneidera sinensis is an endangered relic tree species in the Akaniaceae family and is sporadically distributed in eastern Asia. As opposed to its current narrow and rare distribution, the fossil pollen of B. sinensis has been found to be frequent and widespread in the Northern Hemisphere during the Late Miocene. B. sinensis is also a typical mycorrhizal plant, and its annual seedlings exhibit high mortality rates in absence of mycorrhizal development. The chromosome-level high-quality genome of B. sinensis will help us to more deeply understand the survival and demographic histories of this relic species.ResultsA total of 25.39 Gb HiFi reads and 109.17 Gb Hi-C reads were used to construct the chromosome-level genome of B. sinensis, which is 1.21 Gb in length with the contig N50 of 64.13 Mb and chromosome N50 of 146.54 Mb. The identified transposable elements account for 55.21% of the genome. A total of 45,839 protein-coding genes were predicted in B. sinensis. A lineage-specific whole-genome duplication was detected, and 7,283 lineage-specific expanded gene families with functions related to the specialized endotrophic mycorrhizal adaptation were identified. The historical effective population size (Ne) of B. sinensis was found to oscillate greatly in response to Quaternary climatic changes. The Ne of B. sinensis has decreased rapidly in the recent past, making its extant Ne extremely lower. Our additional evolutionary genomic analyses suggested that the developed mycorrhizal adaption might have been repeatedly disrupted by environmental changes caused by Quaternary climatic oscillations. The environmental changes and an already decreased population size during the Holocene may have led to the current rarity of B. sinensis.ConclusionThis is a detailed report of the genome sequences for the family Akaniaceae distributed in evergreen forests in eastern Asia. Such a high-quality genomic resource may provide critical clues for comparative genomics studies of this family in the future.