Unknown

Dataset Information

0

Biodegradable porous micro/nanoparticles with thermoresponsive gatekeepers for effective loading and precise delivery of active compounds at the body temperature.


ABSTRACT: Stimuli-responsive controlled delivery systems are of interest for preventing premature leakages and ensuring precise releases of active compounds at target sites. In this study, porous biodegradable micro/nanoparticles embedded with thermoresponsive gatekeepers are designed and developed based on Eudragit RS100 (PNIPAM@RS100) and poly(N-isopropylacrylamide) via a double emulsion solvent evaporation technique. The effect of initiator types on the polymerization of NIPAM monomer/methylene-bis-acrylamide (MBA) crosslinker was investigated at 60 °C for thermal initiators and ambient temperature for redox initiators. The crosslinked PNIPAM plays a key role as thermal-triggered gatekeepers with high loading efficiency and precise release of a model active compound, Nile Blue A (NB). Below the volume phase transition temperature (TVPT), the gatekeepers possess a swollen conformation to block the pores and store NB within the cavities. Above its TVPT, the chains rearrange, allowing gate opening and a rapid and constant release rate of the compound until completion. A precise "on-off" switchable release efficiency of PNIPAM@RS100 was demonstrated by changing the temperatures to 4 and 40 °C. The materials are a promising candidate for controlled drug delivery systems with a precise and easy triggering mechanism at the body temperature for effective treatments.

SUBMITTER: Thananukul K 

PROVIDER: S-EPMC9240026 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2024-03-23 | GSE262010 | GEO
| S-EPMC6921619 | biostudies-literature
| S-EPMC5604870 | biostudies-literature
| S-EPMC2971684 | biostudies-literature
| S-EPMC3375499 | biostudies-literature
| S-EPMC6676411 | biostudies-literature
| S-EPMC10135768 | biostudies-literature
| S-EPMC3058936 | biostudies-other
| S-EPMC9743085 | biostudies-literature
| S-EPMC6749266 | biostudies-literature